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ARTICLE INFO ABSTRACT

Index Terms: Internet satellite constellations are expected to play an important role in accommodating the rising global de-
Global broadband internet systems mand for internet access. Such rise in demand, however, is highly uncertain. Staged deployment is an approach
Mega-constellations that provides flexibility to tackle demand uncertainty by enabling the real option to reconfigure a constellation if

Multi-layer satellite constellations
Optimisation

Real options

Staged deployment

demand changes. Advancements in satellite technology have led to the emergence of multi-layered constella-
tions. This opens the opportunity to enhance staged deployment by enabling an additional real option: adding a
new layer to a constellation. This real option has no associated reconfiguration costs, and therefore has the
potential to reduce the cost of staged systems deployment. This paper proposes a framework to design multi-layer
staged deployment systems and analyse their effectiveness in modern mega-constellations under global demand
uncertainty. The framework is applied to four case studies based on market projections. Results show that multi-
layer staged deployment decreases the expected life-cycle cost (ELCC) by 42.8% compared to optimal traditional
single-layer deployment. Multi-layer staged deployment is more cost effective than single-layer staged deploy-
ment in all practical cases, which decreases ELCC by 22.9% compared to traditional deployment. Several cost
altering mechanisms in staged deployment are identified. The results and analysis provide improved economic
performance and better resource utilization, thus contributing in the long term to improved sustainability and
market resilience. An accompanying decision support system provides system engineers with valuable insights on
how to reduce deployment costs using the proposed multi-layered staged strategy.

and evolve to deal with uncertainty and risks in a cost-effective, value-
enhancing manner. Embedding flexibility into a system provides two
advantages: Firstly, flexible systems can be deployed in stages that
respond to the current market conditions, which reduces uncertainty
and hence risk of unused capacity — and therefore makes better use of
limited financial and material resources. Secondly, the cost of deploy-
ment is spread throughout time, which discounts the cost in the present.
When flexibility is used in a system design, two key elements need to be
considered: Firstly, the design of a flexible strategy (i.e. how the system
adapts to uncertain conditions). Secondly, the method for assessing the
economic value that the flexible strategy provides for the system. Un-
derstanding the economic value of a flexible strategy allows designers to
identify the best flexible strategies, and the maximum cost that a
designer should be willing to pay to embed a flexible strategy into a
system. An example method for valuing flexibility is Real Options
Analysis, which quantifies the value of flexibility available on real
irreversible investment projects [3].

Staged deployment is an approach that uses flexibility to mitigate the

1. Introduction

Providing internet from space has the potential to enable anyone to
access the internet from any location, at any time. Low Earth Orbit (LEO)
satellite constellations are expected to play a key role in accommodating
the rising demand for internet access, with global demand expected to
rise to 15 million by 2030 [1].

Satellite constellations are traditionally designed to be deployed in
one stage to meet an expected future demand. Future demand for such
rapidly evolving market, however, is highly uncertain. This uncertainty
poses a huge financial risk for the traditional approach: If demand is
lower than expected, the reduced revenues will not sustain the deploy-
ment costs, which could lead to economic failure such as the Iridium and
Globalstar constellations in the early 2000s [2]. If demand is higher than
expected, then the opportunity for increased revenues is missed.

Flexibility is a paradigm for managing uncertainty and risk in early
conceptual design phases. It provides a system with the ability to adapt
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NOMENCLATURE

a Altitude (km)

a Orbital Shell = [A k]=[D P f I a e]

Bg Guard bandwidth (GHz)

Bgat Satellite frequency bandwidth (GHz)

Br TDMA carrier bandwidth (GHz)

YFp Angle between footprint centres, angle between adjacent

planes (°)

Cr Cp C Coy Cr  Cost components (Initial development, production,
launch, onboard & maintenance, reconfiguration)

capq: Capy: Active capacity, total capacity (Subscribers)

D Antenna Diameter (m)

dr d, Distance between footprint centres, distance between
adjacent planes (km)

demgy; dem,y, Starting demand, expected future demand

(Subscribers)
e Minimum Elevation Angle (°)
Ep /No Energy per bit to noise power spectral density ratio
EIRP Effective isotropic radiated power (dB)
ELCC Expected Lifecycle Cost ($B)
f Downlink frequency (GHz)
F MF-TDMA framing bits
G/T Antenna gain-to-noise-temperature (dB/K)
I Inter-satellite-link topology (None, Ring, Mesh)
J Capacity Jump (%)
K Formation = [a e]
k Boltzmann Constant
K Cluster size
LCC Lifecycle cost ($B)
Ly Max Layers (Layers)
Ltot Total loss (dB)
A Satellite Design = [D P f 1I]
MLSD Multi-layer staged deployment

n Nadir Angle (°)
N° NP N** Number of satellites per plane, number of planes, total
number of satellites

Npiss Number of bits per time slot in MF-TDMA
p Relative packing distance

P Transmitter Power (W)

124% Present Value ($B)

r Discount rate

Ry TDMA carrier data rate (b/s)

Tfoot Tearth  Satellite footprint radius, Earth radius (km)

rec Reconfiguration cost (% of Cp /reconfiguration)
S Deployment stage

SLSD Single-layer staged deployment

o Percentage volatility in demand (%/year)

t Current time (years from initial deployment)

T Simulation time (years)

St Simulation time step (years)

Ty ME-TDMA time frame duration (seconds)

Ty MF-TDMA guard time (seconds)

T Reconfiguration capacity

u Percentage growth rate in demand (%/year)

Uy Global system utilization (%)

VoF Value of Flexibility (% reduction in ELCC compared to
traditional strategy)

3 Deployment path

g Set of all deployment paths (that satisfy the deployment
path constraints)

nr ms my  Strategies (Traditional, single-layer, multi-layer)

7y mg @y, Optimal strategies (Traditional, single-layer, multi-layer)

74 Deployment Strategy Design Vector = [A J L]

z Perpendicular distance of satellite footprint to centre of
Earth (km)

Z Number of cells in a satellite’s footprint

financial risks of demand uncertainty by deploying a satellite constel-
lation in stages. Whenever demand exceeds the current capacity of the
constellation, the constellation evolves to the next stage, which has a
higher capacity, based on some decision criteria. Staged deployment has
one real option to evolve the constellation to the next stage: reconfi-
guration. During an evolution, new satellites are deployed, and existing
satellites can reconfigure their orbits to accommodate these new satel-
lites. The most significant cost to embed flexibility in staged deployment
is the reconfiguration cost, materializing as additional chemical fuel
propellant and fuel tank space to enable reconfigurations [4]. The
standard method for valuing flexibility in the staged deployment liter-
ature is to compare the expected lifecycle cost (ELCC) of the optimum
staged deployment strategy to the optimum traditional strategy. Staged
deployment has been shown to reduce the ELCC of a constellation by up
to 28.9% compared to traditional deployment [4-6].

The technology underpinning satellite constellations has advanced
significantly since staged deployment of satellite constellations was first
studied in early 2000. In particular, the CubeSat revolution has led to
smaller satellites being deployed [7], and the cost to launch into space is
falling in the advent of reusable rockets [8]. These advancements have
resulted in the emerging design of ‘mega-constellations’ which contain
far more satellites than previous generations of constellations. Com-
panies are Dbeginning to apply staged deployment to
mega-constellations: SpaceX is deploying Starlink in two stages
comprising thousands of satellites [9] and Amazon is deploying Kuiper
in five stages [10].

Advancements in satellite technology have made it economically
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feasible to deploy satellites into multiple layers of orbital altitudes. This
is seen in the most advanced mega-constellations filed by the FCC,
Starlink and Kuiper, who have planned to deploy eight and three layers,
respectively [9,10]. The ability to arrange satellites into multiple layers
enables a new real option for staged deployment: adding a new orbital
layer. When a new layer is deployed, no existing satellites need to
reconfigure their orbits. Multi-layer staged deployment (MLSD) there-
fore provides an opportunity to minimise reconfiguration costs, and the
cost of embedding flexibility in the design, as compared to traditional
single layer systems, and as compared to single-layer staged deployment
(SLSD). From this point onwards, ‘Traditional’ staged deployment
involving only one layer, as first studied by de Weck et al. [4], will be
referred to by the retronym single-layer staged deployment (SLSD) to
distinguish it from multi-layer staged deployment (MLSD).

2. Literature review

The research on Flexibility in engineering design has emerged over
recent decades from the field of Real Options Analysis (ROA) [11]. Like
standard ROA, the field aims to develop new methods or adapt existing
ones to quantify the benefits associated to flexibility in irreversible in-
vestment projects [12,13]. It builds upon techniques such as dynamic
programming, decision analysis, simulation, and robust optimisation to
identify stochastically optimal solutions under uncertainty, rank or-
dered using primarily economic and risk tolerance metrics. Unlike
standard ROA, the research aims to develop new methods to support the
engineering design process more systematically for flexibility, with the
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goal of improving expected economic performance, sustainability, and
resilience in the face of uncertainty [14]. It builds upon and integrates
knowledge from engineering design theory, creativity, optimisation,
stochastic modelling, and systems engineering to support early con-
ceptual activities for flexibility.

Most relevant to this paper is the work done to quantify and optimize
the value of flexibility (VoF) in engineering systems design. One method
is Decision Analysis (DA) [15], which relies on decision trees and dy-
namic programming to compare different design alternatives as a
structured sequence of decisions and uncertainty realizations. The de-
cisions emulate those that are made by system operators based on un-
certainty realizations, depending on adaptation capabilities embedded
in the design to deal with changing conditions [16]. DA, however, is
limited by the curse of dimensionality, as decision trees can grow
exponentially with increasing decisions and uncertainty nodes, making
them more difficult to use and interpret in practice. A similar approach is
based on binomial lattice analysis, a simplified formulation of the
Black-Scholes formula used to quantify the value of financial options
[17]. Such approach is also limited as it assumes path independence,
which is valid in the context of financial options, but not for real engi-
neering systems.

A more prevalent method to quantify the value of flexibility com-
bines Monte Carlo simulations with decision rules. Decision rules are
akin to triggering conditions that must be met for a system to adapt,
evolve, or reconfigure in the light of uncertainty realizations. This
method elegantly combines design and managerial considerations to
model more directly the design and decision-making process in opera-
tions. A simple decision rule is ‘If demand is higher than capacity by
threshold 4, increase capacity by amount &, else stay the same’. This
method is comparable to standard ROA in its ability to value flexibility,
and it has been shown to handle multiple decision rules and uncertainty
sources simultaneously [18]. The approach can be combined with sto-
chastic programming or robust optimisation to identify the best decision
variables to design and exercise flexibility in operations e.g., 4 and @ in
the example above, and more complex decision rules as well. Important
benefits compared to traditional ROA is that decision rule-based ROA
does not require any assumption on market supply and demand, the
existence of a portfolio of replicating project cash flows, or path inde-
pendence, to name a few. It is therefore more amenable to analyse and
quantify the benefits of flexibility in complex engineered systems, such
as here.

Chaize [19] first proposed a flexible approach to SLSD for satellite
constellation design in 2003. A framework was created that included a
method for designing SLSD strategies, and a method for valuing their
flexibility using DA and ROA. Flexibility was valued by comparing the
ELCC of the optimum SLSD strategy, n, to the optimum traditional
strategy, 7. de Weck et al. [4] extended this framework to a case study,
revealing a reduction in ELCC of up to 20% in xg compared to . de
Weck et al. acknowledged the potential for MLSD, encouraging research
in this area. Lee et al. [5] analysed the value of flexibility in 2-layer
MLSD under regional demand uncertainty, finding an ELCC reduction
for the optimum MLSD strategy, x,,, compared to 7, of up to 28.9%.
Bosomworth and Grogan [6] used Chaize’s framework to analyse the
value of two-layer MLSD for modern constellations. Results showed an
ELCC reduction for x); compared to 7, of up to 19.5%. Bosomworth and
Grogan’s results also indicated that x, is more cost effective than .
Both Lee et al. and Bosomworth and Grogan only considered the
simplest case of MLSD, with two layers, and this is not representative of
emerging constellation proposals to the FCC, which contain up to eight
layers [9]. Therefore, there is a gap in the literature for analyzing the
economic value that flexibility provides in n-layer MLSD for emerging
mega-constellations. This will become increasingly important to un-
derstand as more multi-layer constellations are approved by the FCC. It
is hypothesized that the value of flexibility for MLSD is greater than
SLSD because the new layer real option does not have reconfiguration
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Ccosts.

The primary objective of this paper is to create a staged deployment
valuation framework for multi-layer mega-constellations under global
demand uncertainty. By applying the framework to four case studies
comparing traditional, SLSD and MLSD systems, the paper has three
secondary objectives: Firstly, to uncover the value of flexibility in MLSD
for modern mega-constellations under global demand uncertainty.
Secondly, to understand the characteristics of optimal deployment
strategies. And finally, to uncover the mechanisms that can alter the
effectiveness of these strategies. These contributions aim to help
constellation engineers incorporate MLSD strategies into their future
designs.

3. Methodology: Flexibility valuation framework

This paper proposes a staged deployment valuation framework for
multi-layer mega-constellations under global demand uncertainty. It
includes novel methods for modelling and comparing three types of
systems: 1) traditional, 2) SLSD, and 3) MSLD. The framework also en-
ables analysing the value of flexibility in SLSD and MLSD, which is an
important metric for quantifying the benefits and costs of the different
strategies.

3.1. Terminology

Explaining the mechanics of the framework requires introducing the
following terminology:

1. An orbital shell is a formation of satellites, in circular orbits, that
share the same orbital altitude [20] (Fig. 1A). An example of an
orbital shell would be the GPS constellation: A formation of 31 sat-
ellites, orbiting Earth at an altitude of 20,180 km [21]. A constella-
tion can include multiple layers of orbital shells (Fig. 1B). For
example, Starlink’s phase-2 constellation proposal has 8 orbital
shells, whose altitudes range from 570 km to 335 km [20,22].

2. In a satellite constellation staged deployment strategy, a deployment
stage refers to the constellations current state.

3. A deployment path is a sequence of deployment stages (Fig. 1C and 1.
D). In a staged deployment strategy, a constellation progresses
through its planned deployment path. In SLSD, all stages consist of a
single orbital shell (Fig. 1C). In MLSD, a stage can have multiple
layers of orbital shells (Fig. 1D).

3.2. Framework overview

The framework is split into three parts (Fig. 2):

A : C stage 1 stage 2 stage 3
stage 1 stage 2 stage 3

B D
/
Fig. 1. Diagrammatic representations of A) a single orbital shell, B) three layers

of orbital shells, C) a three-stage, single-layer deployment path, and D) a three-
stage, multi-layer deployment path.
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Fig. 2. High level overview of the proposed staged deployment valuation framework.

1. Generating orbital shells. Orbital shells are generated to serve as
building blocks for traditional and staged deployment strategies. The
cost components and capacity for each orbital shell is calculated,
which is used for the valuation of traditional strategies and the
generation of deployment paths.

2. Generating deployment paths. Each staged deployment strategy is
modelled as a deployment path. The cost components and capacity
for each stage in each path are calculated, which is used for the
valuation of staged deployment strategies.

3. Optimizing deployment strategies. Traditional and staged
deployment strategies are optimised through a full exploration of the
problem space. The value of flexibility of SLSD and MLSD can then be
determined by comparing the ELCC of the optimum SLSD and opti-
mum MLSD strategies to the optimum traditional strategy.

3.2.1. Generating orbital shells
An orbital shell, a, is modelled using the design vector:

e] @

The design variables are the satellite antenna diameter, D, satellite
transmitter power, P, downlink frequency, f, inter-satellite-link topol-
ogy, I, orbital altitude, a, and minimum elevation angle, e. This design
vector can be split into two sub-vectors:

a=[D P f I a

1. SatellitedesignA = [D P f I]. This vector represents the satellite
design for all the satellites in the orbital shell.

2. Formation k = [a e]. This vector represents the geometric forma-
tion of satellites in the orbital shell.

An orbital shell can therefore also be equivalently defined in terms of
A and k:

a=[1 «] )

Orbital shells are assumed to have global coverage, which signifi-
cantly simplifies modelling and analysis. To achieve global coverage,
orbital shells are assumed to have a polar inclination of 97.6°. This
inclination is chosen because it is used by the polar orbital shells in the
Starlink constellation [22], which matches the papers scope of satellite
internet mega-constellations and global demand for satellite internet.

A traditional deployment strategy, &7, is modelled as a single orbital
shell (Equation (3)) (Fig. 1A). Iridium and Globalstar are examples that
used this strategy: deploying a formation of satellites, in circular orbits,
sharing same orbital altitude.

ar=a 3

A tradespace of orbital shells (the a tradespace) is generated to serve
as building blocks for deployment strategies. Each of the six individual
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components of the design variable, «, take a range of values as an input.
The tradespace contains all permutations of values for the six design
variables.

3.2.1.1. Geometry model. The geometry model calculates the total
number of satellites in an orbital shell, N*t, based on its altitude, a, and
minimum elevation angle, e. N** is then used in cost and capacity
calculations.

Firstly, the radius of a satellite’s footprint, ry,,, is calculated. ryy, is
then used to derive the number of satellites per plane, N°, and number of
planes, NP. This determines the total number of satellites, N*t. More
details on the geometry model can be found in Appendix C.

3.2.1.2. Capacity model. The capacity model calculates the collective
capacity of all satellites in an orbital shell based on its satellite design, 4,
formation, k, and total number of satellites, N**. The capacity model first
calculates the data rate, Ry, using a link budget equation (Equation (4))
adapted from the Space Mission Engineering Textbook [23] and Bos-
omworth and Grogan [6]. The Starlink satellite design is used as a
benchmark to calibrate the link budget equation, with parameter values
sourced from Portillo, Cameron, and Crawley [24] (Appendix D). Sat-
ellites are assumed to use multi-frequency time-division multiple access
(MF-TDMA), as used in previous staged deployment frameworks [6,19],
and is the case for Starlink. This enables the use of Chang and de Weck’s
capacity calculation (Equation (5)) [25] to derive the total capacity of
the constellation, capy,, from the data rate. Other parameters in Equa-
tion (5) are sourced from Portillo, Cameron, and Crawley [24], and FCC
filings [9].

— _ . N)fi _
R, =EIRP G/T L k E”/NO @

Z By R, T — F

z (5)
2K Br + Bg nyirs + Ry T

Capior = Nsars*

The active capacity of the constellation, cap,, is determined by the
global percentage utilization of the orbital shell, Us, which represents
the percentage of satellites serving users at any given time. This con-
siders satellites flying over uninhabited areas such as the ocean or
mountains. With no inter-satellite links (ISLs), Us is around 10% [26].
This increases to 70% for a ring ISL topology [6], and to 90% for a mesh
ISL topology [6]. ‘Constellation capacity’ from this point onwards refers
tO Capqct-

CaPaet = €apio+Us (6)

3.2.1.3. Cost model. The cost model calculates cost components for
each orbital shell, which are used to calculate the ELCC for each
deployment strategy. The cost components are the initial development
cost, Cjp, production cost, Cp, launch cost, C;, onboard and maintenance
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cost, Copm, and reconfiguration cost, Cg. There are three ways in which a
constellation can incur costs:

1. Initial Deployment: Cost = C;p + Cp + Cr + Cr
2. Maintenance: Cost = Com
3. Evolving to the next stage: Cost = Cp+ C + Cr

The Small Satellite Cost Model (SSCM) [27] is used to derive four of
the cost components: Cjp, Cp, Cr, and Coy. The SSCM uses the total dry
mass, My, of a satellite to calculate cost components. my,, is estimated
using the input parameters D, P, and I (Equation (7)). The Starlink sat-
ellite design is used as a benchmark for estimating dry mass because it
resembles the satellite designs used in the papers case studies and is well
documented. The benchmark constants used are the Starlink satellite’s
total dry mass, my = 260kg, transmitter power, P; = 2200W, and an-
tenna diameter, D; = 3.5m. The total dry mass is assumed to scale lin-
early with power, and quadratically with antenna diameter. Finally, the
presence of ISLs is assumed to scale the dry mass. This is captured
through my, which has the value of 1, 1.05 or 1.2 for no ISLs, ring ISLs,
and mesh ISLs, respectively.

3 P\ (D)’
Moy = My P, D, my

The SSCM uses my,, to derive 26 separate costs. These costs are used
to derive the following cost components for each orbital shell: Cj, is
calculated by summing all non-recurring costs. Cp is calculated by
summing all structural recurring costs. Coy is equal to the Launch &
Orbital Operation Support (LOOS) recurring cost. C; is calculated by
multiplying the cost of a Falcon 9 rocket launch by the number of
required launches.

The SSCM is selected over the other publicly available cost model,
the Unmanned Space Vehicle Cost Model (USCM) [28]. This is because
unlike USCM, the SSCM is scoped for satellites with a dry mass <1000
kg, which is typical for satellites used in mega-constellations.

The reconfiguration cost, Cg, cannot be derived from the available
cost models, therefore a new method for calculating Cg is proposed: Cg is
assumed to be the cost for additional fuel and tank space required to
enable reconfigurations. This cost is incurred when the satellite is pro-
duced, not during a reconfiguration itself. The cost of additional fuel and
tank space is modelled as a percentage of the production cost, rec,
multiplied by the reconfiguration capacity of a satellite, 7.

)

Cr=Cp*rec*t

(8)

The reconfiguration capacity of a satellite is determined by the
staged deployment strategy, and is discussed in B.2.2.

Whenever a cost C is incurred, its present value PV is calculated
based on the discount rate r at the time t (years) the cost is incurred,
starting from ¢t = 0:

C

PV(c) D]

9

Discounting is used to account for the time value of money. The value
of r can only be estimated and is different between applications and
industries.

3.2.2. Generating deployment paths

A staged deployment strategy is modelled as a deployment path, &
(Fig. 1C and D): a constellation follows the deployment path from the
first stage, S1, to the Nth stage, Sy:

&=[S Sw]

A stage, S, is comprised of layers of orbital shells. The number of
layers in a given stage, L, is between one and a specified maximum, L,,:

1D

(10)

S=[a ar | where1 <L <L,
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Staged deployment strategies include SLSD strategies and MLSD
strategies. For an SLSD strategy, s, all stages must contain only one
orbital shell (Equation (12)). For an MLSD strategy, m), a stage can
contain multiple layers of orbital shells (Equation (13)). Examples of
SLSD and MLSD strategies using this notation are shown in Fig. 3.

ns=E, where L, =1 12)

wty =&, where L, > 1 (13)
3.2.2.1. Deployment path constraints. The following constraints are
applied to deployment paths to ensure that only practical deployment
paths are generated:

cap(x+1)>cap(x)-J whereJ > 1 (Ccn
Clayer i > Cinitial Vi (C2)
Atayer i = Ainitiat Vi (C3)
L<L, (&)

Constraint (C1) states that the next stage (x + 1) must have a higher
constellation capacity than the current stage (x). This is because if the
next stage has a smaller constellation capacity than the current stage, it
implies that satellites will be prematurely de-commissioned — this is
more expensive to do than simply leaving satellites in orbit, and is thus
economically disadvantageous. This highlights that staged deployment
is only flexible in one direction — as demand increases. The variable J is
explained in section B.2.2. Constraint (C2) states that the minimum
elevation angle, e, cannot decrease below the initial e. This rule gua-
rantees that all receivers from the initial deployment will have a con-
stant signal. Constraint (C3) specifies that all satellites in the
constellation share the same satellite design throughout the constella-
tion’s lifetime. This constraint is used in prior literature to acknowledge
that once deployed, the satellite design is difficult to change for physical
or strategic reasons [4,6,17]. Secondly, this constraint enables consid-
erable simplifications in the implementation of the framework.
Constraint (C4) states that the number of layers in the current stage, L,
cannot exceed the maximum layers, L,, of this staged deployment
strategy.

3.2.2.2. Reducing the problem space. Previous frameworks find the
globally optimum staged deployment strategy by searching through the
entire set of all possible deployment paths that satisfy the deployment
constraints, . In the context of modelling multi-layer constellations,
this approach yields an impractically large problem space (For example,
there are 1.4-10%3 possible deployment paths in E for this papers pri-
mary case study). This necessitates a new method for finding optimal
deployment paths.

A more direct search algorithm for finding optimal deployment paths

stage 1

¢, = [laa] [ap] [ac]]

new layer reconfiguration reconfiguration

stage 2 stage 3

stage 1 stage 3 stage 4

$y= [lay] [@a @p] [ac ap] [ac ap]]

reconfiguration

stage 2

new layer new layer reconfiguration

Fig. 3. Examples of deployment paths in their mathematical representation,
including their orbital shells, stages, and evolution types (new layer or recon-
figuration). Top: An SLSD deployment path (L 1). Bottom: An MLSD
deployment path, where.L,, = 2
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has not been implemented in prior literature that uses deployment paths
because there is no clear way to compare similarity between deployment
paths in & (Fig. 4, right): This makes it difficult to infer a route to an
optimal solution, for example using a genetic algorithm.

The proposed search method maintains the full search of a set of
deployment paths, however the set it searches is significantly reduced
compared to Z as used in prior literature. This is achieved through two
procedures:

1. For each family of orbital shells sharing the same satellite design,' all
non-Pareto optimal orbital shells in that family are removed (A
Pareto optimal orbital shell maximises capacity and minimizes
ELCC). This stems from the observation that the optimal deployment
path for a given family is always composed of Pareto optimal orbital
shells in that family. This means that non-Pareto optimal orbital
shells will never contribute to an optimal strategy, and therefore can
be removed.

. Staged deployment strategies are represented by a new staged
deployment design vector, y. This vector is decoded into a close-to-
optimal deployment path, &~. The design variables in y are chosen
such that:

a. The y tradespace contains a practical number of staged deploy-
ment strategies to be explored (45,000 compared to 1.4- 1052 in
for the papers primary case study).

b. A wide range of deployment strategies is explored.

c. A staged deployment strategy can be summarised in a simpler,
more concrete way than as a deployment path.

y is composed of three design variables: y =[A J Lp].

1. Satellite design, 4, is a fundamental property of a deployment path,
because of the constraint (C3) that all satellite designs must be the
same for a given deployment path.

. Capacity jump, J, specifies the minimum jump in capacity between
stages (As shown in rule C1). Capacity jump is a chosen variable
because it presents an important trade-off involving flexibility and
reconfiguration costs: When J is low, there are many stages in €. This

Set of all deployment paths, =
Where L, =1

[[ag]]

Orbital Shell
Tradespace

ay [[@a] [ap]] [l
(143 [[eta] [@p] [ac]]
ac [l@all [[ary] [acl]

[[ap] [ecl]

Fig. 4. An example of the creation of the set of all deployment paths (that
satisfy the deployment path constraints), &, from an orbital shell tradespace
containing three orbital shells. The deployment paths in E are limited to a single
layer (L, = 1). The number of deployment paths in E increases hyper-
exponentially with 1) the number of orbital shells and 2) the maximum

layers, Lp,.

1 The requirement to segment into families stems from deployment path
constraint C3.
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enables high flexibility, but high reconfiguration costs. Whereas
when J is high, flexibility is low, but so are the reconfiguration costs.
Maximum layers, L, specifies the maximum number of layers
allowed in any given stage in &. L, is a chosen variable because it can
be used to assess the effectiveness of increasing layers on ELCC, and it
differentiates between zg (where L,, = 1) and &y, (where L, > 1).

3.

w is converted into &~ using a fixed function decodePath, which has
the following high-level steps:

1. For the first stage, select the Pareto optimal orbital shell with the
lowest constellation capacity that is greater than or equal to
demgy,-J. This step replicates a characteristic of optimal paths
observed from Chaize’s results [19].

2. A new layer is added in each subsequent stage, until L,, layers of
orbital shells have been deployed. When adding a new layer, select
the Pareto optimal orbital shell with the lowest capacity that satisfies
the deployment path constraints.

. The remaining stages are deployed as reconfigurations. For each
subsequent stage, select the layer and Pareto optimal orbital shell to
reconfigure to which results in the smallest jump in capacity that
satisfies the deployment path constraints.

. Finish the path once the constellation capacity is greater than dem,y.

It is not guaranteed that any of the paths encoded in the y tradespace
are globally optimal because not every path containing only Pareto
optimal shells is explored. However, a suite test cases for small E show
that the ELCC of the optimal single-layer strategy found using
decodePath is on average 0.41% higher than the ELCC doing a full search
of E. This demonstrates that decodePath is capable of producing close-to-
optimal paths in a significantly reduced problem space.

3.2.3. Optimizing deployment strategies

The optimal strategies x,,, 7 and =, are strategies that minimise
ELCC in their respective deployment approaches. A strategy’s ELCC is
calculated using an objective function that simulates the strategy. The
optimisation is performed by running a full search on all possible stra-
tegies that can be created from the a and y tradespaces.

#y is found by minimising the objective function ELCC,, (n7), where
zr is the variable to optimize. ;. is constrained by cap(mr) > demeyp,
meaning that a traditional strategy must be an orbital shell with a ca-
pacity greater than the expected future demand after a specified time-
frame, demgp,q. This constraint models the traditional approach of
deploying an orbital shell upfront with a capacity that accommodates
the expected future demand, and has been modelled previously [6,19].
In ELCC,, (7r), the initial deployment cost is incurred at the start of the
simulation. The onboard and maintenance cost is then incurred at every
time step.

ng and =), are both found by minimising the objective function
ELCC, (). mg is constrained by L,, = 1. ), is constrained by L, > 1. In
ELCC,(y), a staged deployment strategy, v, is decoded into its corre-
sponding close to optimal deployment path, & . This path is then
simulated through pre-computed demand scenarios. The initial devel-
opment cost is incurred at the start of the simulation. Every time the
current demand exceeds the constellation capacity of the current stage
in &7, the constellation evolves to the next stage in &~ . The corre-
sponding evolution cost is then incurred. The onboard and maintenance
cost for the current stage is incurred at every time step.

In both objective functions, increasing the expected final demand,
dem,y,, will increase ELCC since larger, more expensive constellations
will have to be deployed to accommodate the demand.

3.2.3.1. Demand model. The demand model generates stochastic de-
mand scenarios, which are used to value the ELCC of staged deployment
strategies. Demand scenarios are modelled using geometric Brownian
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motion (GBM) (Fig. 5), which simulates growth as a percentage drift, y,
with percentage volatility, o:

( (,u—é) 1+6W,>
dem, = demy,,-e

where dem;, is the demand at time t, demgy, is the starting demand, and
W, is the Wiener process. y is calculated based on demgr, demgnq, and
total simulation time, T:

In dem ey
demsiars

T

14)

n= 15)

10,000 stochastic demand scenarios are generated to ensure that
strategies are assessed against a representative sample of possible
scenarios.

Note that traditional strategies are not simulated against stochastic
demand scenarios. They are instead simulated based on the future ex-
pected demand, dem,,,. This is because their optimal strategy, and hence
ELCC, only depends on dem,,,. The interpretation of this is that tradi-
tional strategies deploy to meet the expected demand, and don’t adapt,
regardless of the demand scenario, thus offering no flexibility.

3.3. Case studies

Four case studies are analysed to achieve the secondary objectives of
this paper. The first case study analyses the characteristics of optimal
MLSD strategies. The subsequent three case studies analyse the value of
flexibility (VoF) in SLSD and MLSD, and the mechanisms which can alter
it.

VoF represents the expected savings from using the proposed optimal
staged deployment strategy over an optimal traditional strategy, used as
benchmark. It gives system engineers an indication of how much they
should be willing to pay to embed this flexibility into the system design,
since this design will typically differ significantly from a traditional
design approach. If the cost is less than the expected savings, a staged
deployment approach should be favored over a traditional design.

All case studies share the same tradespaces. The orbital shell
tradespace (Table 1) is based off Bosomworth and Grogan [6], who
explored mega-constellation orbital shells. The 20 km interval of orbital
altitude reflects the smallest orbital intervals currently approved by FCC
(Kuiper Constellation [29]). There are a total of 65,880 orbital shells in
the tradespace.

The staged deployment strategy tradespace (Table 2) is designed to
provide a range of staged deployment strategies. Capacity jump ranges
from 1.2, enabling very high flexibility, to 15, which results in a 2-3
stage deployment strategy. Maximum layers, L,, ranges from 1
(covering SLSD), to 5 (the average number of layers in the largest

stage 3 ]

Evolution

d') New Layer
¢ Reconfiguration
Layer

® 00
T2 3

stage 2

stage 8 /
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---- Constellation

stage 6
o Capacity
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stages — demyny

stage 2 stage 3
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Fig. 5. Example of a demand scenario, with a 3-stage SLSD strategy (top) and
an 8-stage, 3-layer MLSD strategy (bottom).
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Table 1
Orbital shell, a, tradespace ranges.

Variable Units Bounds Step Discrete Values
Antenna Diameter, D m 2-4 0.5 -

Transmitter Power, P W 200-2200 400 -

Frequency Band, f GHz - - 15, 30

ISL Geometry, I - - - None, Ring, Mesh
Altitude, a km 400-1600 20 -

Min Elevation, e degrees 10-60 10 -

Table 2

Staged deployment strategy, y, tradespace ranges.
Variable Range Step
Capacity Jump, J 1.2-15 0.2
Max Layers, Ly, 1-5 1

Satellite Design, A (Based on Orbital Shell Tradespace Ranges)

modern mega-constellations currently approved by the FCC [9,29]).

All fixed demand scenario parameters (Table 3) are shared between
case studies (Table 4), and are chosen to reflect demand forecasts from
2019 to 2029 by Northern Sky Research (NSR) [1]. A fine time step of
1/48 years (=~ 2 weeks) results in detailed demand scenarios, which
allows a wide range of possible scenarios to be explored.

Case studies differ in their values for three scenario parameters: the
discount rate, r, reconfiguration cost, rec, and volatility, o. These pa-
rameters are chosen because they are each expected to affect the VoF in
a staged deployment strategy. A nominal value is chosen for each
parameter to estimate realistic scenarios: r = 10% is a commonly chosen
value for space based projects. 0 = 30% produces demand scenarios that
fluctuate within the upper and lower bounds of demand forecasts by
NSR [1]. A nominal value for rec is harder to determine since rec is a
novel concept in this framework, and therefore no nominal value of rec
exists in prior literature. It is estimated by finding a value for rec that
minimizes the discrepancy in results to prior literature, in particular, the
value of flexibility, VoF, and reconfiguration capacity, 7. When bench-
marked against case studies in prior literature, the value of rec which
minimized differences in VoF and 7 was 22% : This value leads to a VoF
= 20.2% for SLSD, in line with de Weck [4] (where VoF = 20%). It also
leads to 7 = 3 in 2-layer MLSD, in line with Bosomworth and Grogan [6]
(where 7 = 3), and 7 = 1, approaching Lee et al. [5] (where 7 = 0).

The first case study simulates a single case with nominal parameter
values. The subsequent three case studies each simulate 50 cases that
explore a range of values for one of the parameters, keeping the other
parameter values nominal.

A primary application of the framework is to analyse VoF for SLSD
and MLSD as compared to a benchmark traditional system (Equations
(16) and (17)). It quantifies the reduction in ELCC from using an optimal
flexible strategy as compared to the optimal traditional benchmark
strategy.

ELCC,, — ELCCy

VoFssp = (16
SLSD ELC C”;
ELCC”; — ELCC,,»W
VoFypsp=—--—+———2™N" 17
MLSD ELC C,,; a7)
Table 3
Fixed demand scenario parameters.
Variable Units Value
Simulation Time, T Years 10
Time step, 6t Years 1/48
Starting demand, demgr: Subscribers (M) 0.05
Expected future demand, dem,y, Subscribers (M) 15
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Table 4
Case studies and their parameter values.

Case Study Discount Reconfiguration Cost, Volatility, o
Rate, r (%) rec (%) (%)

1 — Nominal 10 22 30

2 — Variable Discount 0-20 22 30
Rate

3 - Variable 10 0-50 30
Reconfiguration Cost

4 — Variable Volatility 10 22 0-60

4. Results and discussion

The proposed framework and case studies in section III are used to
analyse the value of flexibility, VoF, for SLSD and MLSD systems. This is
because VOoF can be affected significantly by prior modelling assump-
tions about discount rate, r, reconfiguration cost, rec, and volatility, o.
This analysis also helps uncover important design mechanisms to deal
with uncertainty, as discussed below.

The results of the nominal case study (Table 5) show that the VoF for
MLSD, 42.8%, is almost double the VoF for SLSD, 22.9%, indicating that
cost savings could approach twice that of MLSD compared to SLSD, both
in respect of a traditional design. The nominal case study also indicates
characteristics of the optimal strategies for the traditional, SLSD, and
MLSD approaches. The optimal strategies share the same values for
three of the four satellite design variables: D = 2m, f = 30GHz, I =
Mesh. P is low, ranging from 200 — 250W. Strategies with these satellite
designs have a set of orbital shells which are close to or on the Pareto
front. These results indicate that optimum strategies favour small sat-
ellites with higher downlink frequencies, consistent with the findings in
Bosomworth and Grogan [6]. MLSD has a smaller capacity jump than
SLSD because the cost savings from reducing reconfigurations permits
more evolutions, which is achieved by smaller jumps in capacity.

The results of case studies 24 (Fig. 6) show how the VoF for SLSD
and MSLD changes with changing discount rate, reconfiguration cost,
and volatility.

Case study 2 (Fig. 6A) shows that the VoF for both SLSD and MLSD
increases with increasing discount rate, . This is because future costs are
more heavily discounted with increasing r, thereby providing additional
benefits for more modular flexible design strategies that deploy capacity
later. The rate of increase in VoF slows because the initial development
cost remains undiscounted, which proportionally takes up more of the
ELCC as r increases. The fluctuations in VoF for case studies 2-4 are a
result of noise from the stochastic demand scenarios. This can be
reduced by simulating more scenarios for each case.

Case study 3 (Fig. 6B) shows that the VoF for MLSD is highly resilient
to changes in reconfiguration cost, rec, with VoF = 42.8%. The VoF for
SLSD however decreases linearly with increasing rec, where VoF =
46.5% when rec = 0%, and VoF = —4.9% when rec = 50%. A negative
VoF means that the value of embedding flexibility in the design is

Table 5

Optimal strategies in nominal case study.
Variable Units Approach

Traditional SLSD MLSD

Antenna Diameter, D m 2 2 2
Transmitter Power, P w 200 200 250
Frequency Band, f GHz 30 30 30
ISL Geometry, I - Mesh Mesh Mesh
Altitude, a km 520 - -
Min Elevation, e degrees 50 - -
Capacity Jump, J % - 9.2 5.4
Maximum Layers, Ly, Layers - 1 5
Expected Lifecycle Cost, ELCC $M 1088 839 622
Value of Flexibility, VoF % - 22.9 42.8
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superseded by its cost — which is rare here, and as confirmed in many
other studies [13]. The VoF for MLSD is resilient to reconfiguration costs
after rec = 3.1% because in every subsequent case, x,, has sufficiently
high values for L, and J that there are no reconfigurations in the
deployment path, which makes VoF independent of rec. MLSD is less cost
effective than SLSD when rec is very low (rec < 1.8%). The mechanism
explaining this is in sub-section A.

Case study 4 (Fig. 6C) shows that the VoF for both SLSD and MLSD
increases with increasing volatility, o. This is consistent with prior
literature on real options and flexibility in design [3,12,14], where
optionality is increasingly valuable when a system is facing increasing
volatility. It reinforces the intuition that in a world fraught with irre-
ducible uncertainty, flexibility can be extremely valuable.

4.1. Mechanisms that affect the value of flexibility in staged deployment

It is important for system engineers to understand the mechanisms
that affect the VoF in flexible SLSD and MLSD systems to make the most
informed design decisions. Six such mechanisms have been identified
using this framework.

Firstly, low-capacity orbital shells (LCOs) are less cost effective than
high-capacity orbital shells (HCOs). LCOs have high altitudes and low
minimum elevation angles, which both increase the path distance be-
tween a satellite and a receiver. Increasing path distance increases signal
attenuation from space (path loss), which lowers the capacity per sat-
ellite. This makes LCOs cost ineffective compared to HCOs. The tradi-
tional approach always deploys an HCO with a capacity greater than
dem,,,, whereas the staged deployment approaches initially deploy
LCOs. This makes the staged deployment approaches less cost effective
than the traditional approach initially, which is further penalised by the
discount rate.

Secondly, when J is small, launch costs are disproportionately high.
Each evolution requires at least one rocket to launch new satellites. A
small jump in capacity, however, results in a small payload relative to
the payload capacity of the rocket. This leads to significant empty space
during launches, which greatly increases the cost to launch per satellite
for small values of J. This mechanism is becoming less significant as
modern ride-sharing services such as the SmallSat Rideshare Program by
SpaceX are becoming more widespread [30].

Thirdly, as J decreases, the reconfiguration cost increases. This is
because decreasing J increases the number of evolutions, which in-
creases the required reconfiguration capacity per satellite.

The following two mechanisms increase the VoF for MLSD by
reducing the required reconfiguration capacity of satellites:

Increasing L,, decreases the number of reconfigurations in a
deployment path. This is because a deployment path has L,, new layer
evolutions, and the remaining evolutions (if any) are reconfigurations.
Decreasing reconfigurations in the deployment path reduces the
required reconfiguration capacity per satellite.

Increasing L, decreases the number of reconfigurations per layer.
This is because during a reconfiguration evolution, only one layer is
reconfigured. Therefore, the more layers there are, the fewer reconfi-
gurations are required per layer. This decreases the required reconfi-
guration capacity per satellite, 7.

The final mechanism decreases the VoF for MLSD relative to SLSD.
For early stages in MLSD, capacity is increased by deploying an LCO as a
new layer, while for early stages in SLSD, capacity is increased by
reconfiguring into a higher capacity orbital shell. This initially makes
VoFsp lower than VoFgsp. If rec 0%, this mechanism leads to
VoFsp being lower than VoFgisp overall.

4.2. Study limitations

The framework is limited to modelling orbital shells with a Streets-of-
Coverage (SoC) design. The most common design used in mega-
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A) Variable Discount Rate

B) Variable Reconfiguration Cost
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C) Variable Volatility
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Fig. 6. Value of Flexibility in MLSD and SLSD for under variable A) reconfiguration cost, B) discount rate, and C) volatility.

constellations is the Walker design, followed by the SoC design. Walker
designs are not modelled because they often have non-polar orbital in-
clinations (unlike SoC) - This is problematic for two reasons: Firstly, the
geometry model becomes increasingly inaccurate at deriving the total
number of satellites in an orbital shell with low inclinations. Secondly,
the inclination of a Walker design can make a huge difference to how
many people are able to access its services. This is not factored into the
current framework. Factoring in the percentage of global demand that
can access the Walker designs shell based on its inclination adds a sig-
nificant layer of complexity that is outside the scope of this paper, - but
would nonetheless be an interesting avenue for future research.

The case study has some limitations that also offer avenues for future
research. Firstly, only costs are considered, not revenues from sub-
scribers. This is sufficient to show the relative cost effectiveness of the
three deployment approaches, but insufficient to verify their economic
feasibility.

Secondly, the reconfiguration cost is assumed to scale linearly with
the number of required reconfigurations to minimise complexity. A
linear relationship may not be the case: Parametric cost models such as
the SSCM and USCM use cost estimating relationships (CERs) to
generate cost estimates [31]. CERs are calculated by analysing historic
data, which often reveal logarithmic, quadratic, and exponential
relationships.

Thirdly, the reconfiguration cost is assumed to be incurred whenever
a new satellite is produced. However, designing a satellite to enable
reconfigurations will also incur cost during the initial development,
which is not considered in the framework to minimise complexity. This
decreases the reliability of ELCC comparisons between x}, and .

4.3. Significance of outcomes

Results of the nominal case study show that flexible single-layer and
multi-layer staged deployment are cost effective compared to traditional
deployment, reducing ELCC by an average of 22.9% and 42.8%,
respectively. This is in line with previous results in the literature [4-6].

The cost effectiveness of multi-layer compared to single-layer staged
deployment is less clear because the reconfiguration cost is not known.
However, multi-layer staged deployment is likely to increase in cost
effectiveness in the near future for three reasons: firstly, launch costs are
continuing to decrease [32]. Secondly, smaller rockets are emerging on
the market, enabling small jumps in capacity to be more cost effective.
Thirdly, reconfiguration costs are unlikely to decrease in the near future
because recent advancements in propulsion technology such as solar
sails are unsuitable for the application of orbital reconfiguration.

Flexible multi-layer staged deployment therefore holds potential to
significantly reduce ELCC in modern constellations. This has both eco-
nomic and social implications. If this is achieved, the market for space-
based internet systems is likely to grow. Such approach would make
better use of limited financial and material resources (i.e., deploy
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additional capacity only if and when it is needed), thus contributing in
the long term to better financial and environmental sustainability,
reduced pollution from launches, and space junk. As shown in Fig. 6, it
would contribute better resilience in the face of global demand uncer-
tainty. Internet access could become more widely available for users in
remote areas with limited Internet access, thus contributing to wider
access to knowledge, and education. Satellite internet could also become
more competitive with terrestrial networks, making internet access
more affordable for all users. In a world where connectivity is increas-
ingly important for society and the economy, multi-layer staged
deployment could play an important role in enabling such new global
connectivity.

5. Conclusion
5.1. Overview and contributions

Multi-layer staged deployment (MLSD) is a promising approach to
deploy satellite constellations that has emerged from recent advances in
satellite technology.

This paper’s primary contribution is the proposal of a staged
deployment valuation framework for flexible multi-layer mega-con-
stellations under global demand uncertainty. The framework has a novel
approach for modelling staged deployment strategies to reduce the large
problem space whilst exploring a variety of strategies. The framework’s
approach for valuing flexibility in staged deployment strategies builds
on previous methods by incorporating a model for reconfiguration cost.
A decision support system is designed and implemented to rapidly
prototype, test and optimize staged deployment strategies” The frame-
work and decision support system are applied to four case studies based
on market projections. The results and discussion of these studies pre-
sent the following contributions which reflect the papers secondary
objectives:

1. Flexible MLSD is shown to decrease the expected lifecycle cost
compared to traditional deployment by 42.8%. MLSD is shown to be
more cost effective than single-layer staged deployment (SLSD), even
with low reconfiguration costs, confirming the papers hypothesis. A
sensitivity analysis reveals that MLSD has improved resilience to
uncertain parameters compared to SLSD.

. Optimal MLSD strategies have small, low power satellite designs,
which are deployed into many layers.

. Six cost altering mechanisms are identified, which explain how and
why the expected lifecycle cost of flexible strategies can change.

Framework limitations and significance of outcomes are discussed.

2 Details on the decision support system can be found in the appendix.
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The framework, decision support system, and cost altering mechanisms
introduced provide tools for constellation designers to reduce constel-
lation costs by exploring multi-layered staged deployment. In doing so,
it is hoped that the market for satellite internet will continue to grow,
providing internet access for anyone, anywhere, at any time. It will also
contribute to better financial and environmental sustainability in the
long term, reduced pollution, and space junk.

5.2. Future work

The framework could be further developed by modelling Walker
constellation designs. Doing so would allow the framework to more
accurately model modern mega-constellations and analyse their effec-
tiveness. Modelling satellite lifetime into the framework could improve
its fidelity: some low Earth orbit constellations such as Lynk Smallsat
System [33] only have a lifetime of 2-3 years. In this case, there is an
opportunity for future work to explore a replenishment strategy over a
reconfiguration strategy. Other potential strategies could be explored: a
‘combine’ evolution where two layers reconfigure into one could
improve cost effectiveness without requiring any launch costs. A

Appendix

A. Decision Support System
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detailed demand threshold could be investigated, where evolutions are
only triggered when demand reaches a percentage of capacity and for a
set duration. This could avoid triggering evolutions for temporary peaks
in demand. Triggering evolutions based off an exponential trendline of
demand could help model the trajectory of demand more accurately. A
future study could explore how revenues affect the economic feasibility
of staged deployment: Modelling a starting budget with revenues could
dismiss strategies that run out of budget during a deployment mission.
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A Decision Support System (DSS) was built to enable rapid testing for the proposed framework. All the results in this paper were calculated using
the DSS. It is written in JavaScript, and consists of 5000+ lines of code, across 300+ functions. It allows constellation designers to rapidly model and
assess the value of single-layer and multi-layer staged deployment strategies for mega-constellations (Fig. 7). The DSS contains the following features:

1. Constellation visualiser: A detailed visualisation suite enables system designers to see a visual depiction of constellation strategies. Strategies can

a s~ wWwN

be played and paused in time for randomly generated demand scenarios. Approaches can be directly compared for the same demand scenario to
uncover design insights. A strategy’s deployment path is visualised and graphed against the current demand scenario to see how capacity increases
through time.

. Tradespace visualiser: The orbital shell tradespace can be visualised to see the relationships between orbital shells in terms of cost and capacity.
. Simulation configuration: All scenario parameters and tradespace ranges can be adjusted to run specific tests.

. Results summary: Optimal results are displayed for each case analysed in the simulation.

. Heatmap generator: Heatmaps can be heavily customised through a wide range of input and output options. These can reveal hidden relationships

between two variables.

. Save and load results: Results are compressed using a custom compression algorithm to minimise file size.

7.Loading screen: During simulation, a visual loading screen shows progress, current case and strategy are displayed, and the estimated time
remaining is calculated
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Inputs

Simulation

Heatmap

Running Ex|

Fig. 7. A collection of screenshots from the developed Decision Support System. Spiralling clockwise from top left corner: visualisation suite, results panel, orbital
shell tradespace explorer, configuration panel, constellation visual comparisons, heatmap generator, and loading screen

B. Performance Optimisation in DSS

An important consideration when designing the DSS was the optimisation performance. Increasing performance allows more tests, results, and
insights. The following performance enhancing strategies improved the speed of optimisation by a factor of over 3000 compared to the original design.
Two key performance enhancers were implemented:

Firstly, discount values were pre-calculated. Every time a cost is incurred after t = 0, it needs to be discounted using Equation (9). Discounting
requires exponentiation, a relatively costly operation computationally when compared to the other mathematical operators. Discounting is the most
repeated calculation in the optimisation, for the papers case study, it is executed over 5 billion times. To stop the same discount values being
recalculated every demand scenario, the discount value at every time step was pre-calculated at the beginning of the optimisation and stored in a
lookup table. Discounting now only requires multiplying a cost by the discount value at the corresponding time step. Pre-calculating discount values
improved performance by a factor of 100.

Secondly, memoization was used for calculating Coy costs. Calculating Copy is amongst the most repeated calculations in the optimisation. To
calculate Coy, the recurring LOOS cost needs to be exponentiated using a learning factor L, based on the current number of satellites in the
constellation. The number of satellites only changes when an evolution occurs, which is in the order of 1% of steps. Therefore, many calculations are
repeated. This situation is a good candidate for memoization. Memoization is an optimisation technique where results for an expensive function are
stored in a cache. If a given input has been calculated before, the corresponding output is taken from the cache, otherwise the output is calculated and
added to the cache. Using memoization improved performance by a factor of 20.

Other smaller performance enhancers were implemented, including calculating deployment paths per case instead of per demand scenario, bulk
calculating Coy costs, and only running one demand scenario when ¢ = 0.

C. Geometry Model Details

The geometry model calculates the orbital arrangement of satellites based on an orbital shell’s formation k =[a e]. The formation is defined in
terms of the number of orbital planes, NP, and satellites per plane, N°. These determine the number of satellites in the constellation, which is used by
the cost and capacity models. The geometry model first calculates the dimensions of a single satellite’s footprint. This is then used to determine the
smallest arrangement of satellites that achieves global coverage.

Calculating satellite footprint, [z Tfoot } , from minimum elevation angle e and altitude a.

A satellite’s footprint is the area of coverage provided by the satellite. It can be defined geometrically as a circle, with a distance from the centre of
the Earth z, and footprint radius, rf,,. These variables can be derived from the minimum elevation angle, e, altitude a, nadir angle, 5, and earth central
angle, y. The relationship between these variables is shown in Fig. 8.

The sine rule can be used to derive #:

M:sin(e + m2)

18
Yearth Teartn + @ as
n=sin"" (T::'i P cos(e)) (19)
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n and e can be used to derive y:

y=m2—e—n (20)

7 can then be used to derive ry,, and z:
Tfoor = TearmSin(y) (21)

Z = Tearth"COS (7/) (22)

Calculating orbital arrangement, [N° N |, from [z rfgut]:

There are two widely used constellation designs: Streets-of-Coverage, and Walker [34]. Both are defined with the notationi: t/ p/ f, where i is
inclination, t is the total number of satellites, p is the number of equally spaced planes, and f is the relative spacing between satellites in adjacent
planes. Satellites have a circular orbit, and are evenly spaced in a plane. Planes are evenly spaced across a span around the equator. In a
Streets-of-Coverage constellation, this span is approximately 180°. In a Walker constellation, this span is 360°. Streets-of-Coverage constellations are
typically only configured with near-polar inclinations, while Walker constellations are capable of having both polar and non-polar inclinations.

An orbital arrangement is defined in the geometry model by the number of orbital planes, NP, and the number of satellites per plane, N°. To
calculate N’ and N°, constellations are assumed to have a Streets-of-Coverage design.

Fig. 8. Relationship between z, Ty, Tearths € @, 7, and y

Constellations generated with the geometry model have the form 97.6° : SP/P/2. Relative spacing is fixed to simplify modelling and analysis. It is
fixed to 2 because f = 2 is commonly used for Streets-of-Coverage constellations, and it enables the following derivation.

NP and N° are calculated by assuming the unit arrangement of adjacent satellites is an equilateral triangle (f = 2) (Fig. 9). This is the most efficient
packing of circular satellite footprints to achieve global coverage. In this arrangement, if the distance between adjacent footprint centres, dy, is 2 units,
then the distance between adjacent planes, d,, is /3 units (Fig. 9A). That is to say, the ratio of df:dyis2: V3.

One might think to pack the footprints edge to edge (Fig. 9A), however, this would lead to spots of no coverage, which would result in temporary
but frequent connection drops. Therefore, the distance between footprint centres needs to be decreased until the spots with no coverage are elimi-
nated. To regulate the relative distance between footprint centres, a variable is proposed: relative packing distance, p. The distance between adjacent
footprint centres, dr, and the distance between adjacent planes, d,, is calculated as follows:

dr =2Fpporp (23)

dy=V3Tpp 24

When p = 1, footprints meet edge to edge (Fig. 9A). When p < 1, footprints overlap. p = v/3/2 ~ 0.866 is the largest value of p that ensures there is
global coverage (Fig. 9B). Any value of p smaller than this would result in more overlapping than necessary to achieve global coverage.
N¢ is derived from angular distance between adjacent footprint centres, y; (Fig. 10), which is calculated as follows:

id
¥y =2sin”" 2 (25)

Fearth

2r/ys will return the minimum number of satellites per plane to achieve global coverage. However, this number is non-integer, and an integer number
of satellites is required. Therefore, this number is rounded up to ensure global coverage:
2z
2

N* (26)

Finding the number of planes, NP, follows the same process as finding sat,, except it is based of d, rather than d;:
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la
v, = 2sin”! | 22 27)
Yearth
2
nw==2 (28)
Yp

D. Link Budget Equation for Capacity Model

Table 6 shows the link budget used in the framework. The data in the table is sourced from Portillo, Cameron, and Crawley [24].

Table 6

Beam Link Budget for Starlink Downlink.
Parameter Value Units
Tx Diameter 3.5 m
Tx Frequency 13.5 GHz
Tx Efficiency 60 %
Tx Gain 18.6 dBi
Tx Backoff and Line Loss 5 dB
EIRP 36.7 dBW
Path Distance 1684 Km
Space Loss 179.6 dB
Atmospheric Loss 0.53 dB
Rx Diameter 0.7 m
Rx Efficiency 55 %
Rx Gain 46.4 dBi
Rx Line Loss 2 dB
System Noise Temperature 27.3 dB-K
Rx Antenna Gain-to-noise Temperature 19.3 dB-K
Required Nb/NO 12.3 dB
Data Rate 9416 Mbps

E. Orbital Shell Tradespace Visualised

An impression of the number of orbital shells in the orbital shell tradespace from Table 1 can be observed in Fig. 11. The Pareto front belongs
almost entirely to the same satellite design. This design is used by the optimal traditional and SLSD strategies (Table 5).

Plane x+2
Plane x+2
Plane x+1
Distance between adjacent

Plane x+1 4 TR
Plane x footprint centres, df

Plane x Distance between adjacent

planes, dp

Footprint radius, Tfoot ——

No coverage

%

Double coverage

A B

Fig. 9. Satellite footprint packing patterns and corresponding distances for footprints with radius, ry,, = 1, subject to relative packing distance, p. A:p = 1.B:p =
V3/2 ~ 0.866.
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Tearth

Fig. 10. Relationship between y; (angular distance between adjacent footprint centres), ds (cartesian distance between adjacent footprint centres), and reqn (radius

of Earth).
107
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Z 108
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(=]
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Fig. 11. Orbital Shell Tradespace from Table 2, represented in terms of capacity and deployment cost. Each dot is an orbital shell, and each line connects orbital

shells which share satellite design.
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