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A B S T R A C T   

Internet satellite constellations are expected to play an important role in accommodating the rising global de
mand for internet access. Such rise in demand, however, is highly uncertain. Staged deployment is an approach 
that provides flexibility to tackle demand uncertainty by enabling the real option to reconfigure a constellation if 
demand changes. Advancements in satellite technology have led to the emergence of multi-layered constella
tions. This opens the opportunity to enhance staged deployment by enabling an additional real option: adding a 
new layer to a constellation. This real option has no associated reconfiguration costs, and therefore has the 
potential to reduce the cost of staged systems deployment. This paper proposes a framework to design multi-layer 
staged deployment systems and analyse their effectiveness in modern mega-constellations under global demand 
uncertainty. The framework is applied to four case studies based on market projections. Results show that multi- 
layer staged deployment decreases the expected life-cycle cost (ELCC) by 42.8% compared to optimal traditional 
single-layer deployment. Multi-layer staged deployment is more cost effective than single-layer staged deploy
ment in all practical cases, which decreases ELCC by 22.9% compared to traditional deployment. Several cost 
altering mechanisms in staged deployment are identified. The results and analysis provide improved economic 
performance and better resource utilization, thus contributing in the long term to improved sustainability and 
market resilience. An accompanying decision support system provides system engineers with valuable insights on 
how to reduce deployment costs using the proposed multi-layered staged strategy.   

1. Introduction 

Providing internet from space has the potential to enable anyone to 
access the internet from any location, at any time. Low Earth Orbit (LEO) 
satellite constellations are expected to play a key role in accommodating 
the rising demand for internet access, with global demand expected to 
rise to 15 million by 2030 [1]. 

Satellite constellations are traditionally designed to be deployed in 
one stage to meet an expected future demand. Future demand for such 
rapidly evolving market, however, is highly uncertain. This uncertainty 
poses a huge financial risk for the traditional approach: If demand is 
lower than expected, the reduced revenues will not sustain the deploy
ment costs, which could lead to economic failure such as the Iridium and 
Globalstar constellations in the early 2000s [2]. If demand is higher than 
expected, then the opportunity for increased revenues is missed. 

Flexibility is a paradigm for managing uncertainty and risk in early 
conceptual design phases. It provides a system with the ability to adapt 

and evolve to deal with uncertainty and risks in a cost-effective, value- 
enhancing manner. Embedding flexibility into a system provides two 
advantages: Firstly, flexible systems can be deployed in stages that 
respond to the current market conditions, which reduces uncertainty 
and hence risk of unused capacity – and therefore makes better use of 
limited financial and material resources. Secondly, the cost of deploy
ment is spread throughout time, which discounts the cost in the present. 
When flexibility is used in a system design, two key elements need to be 
considered: Firstly, the design of a flexible strategy (i.e. how the system 
adapts to uncertain conditions). Secondly, the method for assessing the 
economic value that the flexible strategy provides for the system. Un
derstanding the economic value of a flexible strategy allows designers to 
identify the best flexible strategies, and the maximum cost that a 
designer should be willing to pay to embed a flexible strategy into a 
system. An example method for valuing flexibility is Real Options 
Analysis, which quantifies the value of flexibility available on real 
irreversible investment projects [3]. 

Staged deployment is an approach that uses flexibility to mitigate the 
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financial risks of demand uncertainty by deploying a satellite constel
lation in stages. Whenever demand exceeds the current capacity of the 
constellation, the constellation evolves to the next stage, which has a 
higher capacity, based on some decision criteria. Staged deployment has 
one real option to evolve the constellation to the next stage: reconfi
guration. During an evolution, new satellites are deployed, and existing 
satellites can reconfigure their orbits to accommodate these new satel
lites. The most significant cost to embed flexibility in staged deployment 
is the reconfiguration cost, materializing as additional chemical fuel 
propellant and fuel tank space to enable reconfigurations [4]. The 
standard method for valuing flexibility in the staged deployment liter
ature is to compare the expected lifecycle cost (ELCC) of the optimum 
staged deployment strategy to the optimum traditional strategy. Staged 
deployment has been shown to reduce the ELCC of a constellation by up 
to 28.9% compared to traditional deployment [4–6]. 

The technology underpinning satellite constellations has advanced 
significantly since staged deployment of satellite constellations was first 
studied in early 2000. In particular, the CubeSat revolution has led to 
smaller satellites being deployed [7], and the cost to launch into space is 
falling in the advent of reusable rockets [8]. These advancements have 
resulted in the emerging design of ‘mega-constellations’ which contain 
far more satellites than previous generations of constellations. Com
panies are beginning to apply staged deployment to 
mega-constellations: SpaceX is deploying Starlink in two stages 
comprising thousands of satellites [9] and Amazon is deploying Kuiper 
in five stages [10]. 

Advancements in satellite technology have made it economically 

feasible to deploy satellites into multiple layers of orbital altitudes. This 
is seen in the most advanced mega-constellations filed by the FCC, 
Starlink and Kuiper, who have planned to deploy eight and three layers, 
respectively [9,10]. The ability to arrange satellites into multiple layers 
enables a new real option for staged deployment: adding a new orbital 
layer. When a new layer is deployed, no existing satellites need to 
reconfigure their orbits. Multi-layer staged deployment (MLSD) there
fore provides an opportunity to minimise reconfiguration costs, and the 
cost of embedding flexibility in the design, as compared to traditional 
single layer systems, and as compared to single-layer staged deployment 
(SLSD). From this point onwards, ‘Traditional’ staged deployment 
involving only one layer, as first studied by de Weck et al. [4], will be 
referred to by the retronym single-layer staged deployment (SLSD) to 
distinguish it from multi-layer staged deployment (MLSD). 

2. Literature review 

The research on Flexibility in engineering design has emerged over 
recent decades from the field of Real Options Analysis (ROA) [11]. Like 
standard ROA, the field aims to develop new methods or adapt existing 
ones to quantify the benefits associated to flexibility in irreversible in
vestment projects [12,13]. It builds upon techniques such as dynamic 
programming, decision analysis, simulation, and robust optimisation to 
identify stochastically optimal solutions under uncertainty, rank or
dered using primarily economic and risk tolerance metrics. Unlike 
standard ROA, the research aims to develop new methods to support the 
engineering design process more systematically for flexibility, with the 

NOMENCLATURE 

a Altitude (km) 
α Orbital Shell = [ λ κ ] = [D P f I a e ]
BG Guard bandwidth (GHz) 
Bsat Satellite frequency bandwidth (GHz) 
BT TDMA carrier bandwidth (GHz) 
γf γp Angle between footprint centres, angle between adjacent 

planes (◦) 
CI CP CL COM CR Cost components (Initial development, production, 

launch, onboard & maintenance, reconfiguration) 
capact ​ captot Active capacity, total capacity (Subscribers) 
D Antenna Diameter (m) 
df dp Distance between footprint centres, distance between 

adjacent planes (km) 
demstart ​ demexp Starting demand, expected future demand 

(Subscribers) 
e Minimum Elevation Angle (◦) 
Eb/N0 

Energy per bit to noise power spectral density ratio 

EIRP Effective isotropic radiated power (dB) 
ELCC Expected Lifecycle Cost ($B) 
f Downlink frequency (GHz) 
F MF-TDMA framing bits 
G/T Antenna gain-to-noise-temperature (dB/K) 
I Inter-satellite-link topology (None, Ring, Mesh) 
J Capacity Jump (%) 
κ Formation = [ a e ]
k Boltzmann Constant 
K Cluster size 
LCC Lifecycle cost ($B) 
Lm Max Layers (Layers) 
Ltot Total loss (dB) 
λ Satellite Design = [D P f I ]
MLSD Multi-layer staged deployment 

η Nadir Angle (◦) 
Ns Np Ntot Number of satellites per plane, number of planes, total 

number of satellites 
nbits Number of bits per time slot in MF-TDMA 
ρ Relative packing distance 
P Transmitter Power (W) 
PV Present Value ($B) 
r Discount rate 
Rb TDMA carrier data rate (b/s) 
rfoot rearth Satellite footprint radius, Earth radius (km) 
rec Reconfiguration cost (% of CP /reconfiguration) 
S Deployment stage 
SLSD Single-layer staged deployment 
σ Percentage volatility in demand (%/year) 
t Current time (years from initial deployment) 
T Simulation time (years) 
δt Simulation time step (years) 
Tf MF-TDMA time frame duration (seconds) 
Tg MF-TDMA guard time (seconds) 
τ Reconfiguration capacity 
μ Percentage growth rate in demand (%/year) 
Us Global system utilization (%) 
VoF Value of Flexibility (% reduction in ELCC compared to 

traditional strategy) 
ξ Deployment path 
Ξ Set of all deployment paths (that satisfy the deployment 

path constraints) 
πT πS πM Strategies (Traditional, single-layer, multi-layer) 
π*

T π*
S π*

M Optimal strategies (Traditional, single-layer, multi-layer) 
ψ Deployment Strategy Design Vector = [ λ J Lm ]

z Perpendicular distance of satellite footprint to centre of 
Earth (km) 

Z Number of cells in a satellite’s footprint  
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goal of improving expected economic performance, sustainability, and 
resilience in the face of uncertainty [14]. It builds upon and integrates 
knowledge from engineering design theory, creativity, optimisation, 
stochastic modelling, and systems engineering to support early con
ceptual activities for flexibility. 

Most relevant to this paper is the work done to quantify and optimize 
the value of flexibility (VoF) in engineering systems design. One method 
is Decision Analysis (DA) [15], which relies on decision trees and dy
namic programming to compare different design alternatives as a 
structured sequence of decisions and uncertainty realizations. The de
cisions emulate those that are made by system operators based on un
certainty realizations, depending on adaptation capabilities embedded 
in the design to deal with changing conditions [16]. DA, however, is 
limited by the curse of dimensionality, as decision trees can grow 
exponentially with increasing decisions and uncertainty nodes, making 
them more difficult to use and interpret in practice. A similar approach is 
based on binomial lattice analysis, a simplified formulation of the 
Black-Scholes formula used to quantify the value of financial options 
[17]. Such approach is also limited as it assumes path independence, 
which is valid in the context of financial options, but not for real engi
neering systems. 

A more prevalent method to quantify the value of flexibility com
bines Monte Carlo simulations with decision rules. Decision rules are 
akin to triggering conditions that must be met for a system to adapt, 
evolve, or reconfigure in the light of uncertainty realizations. This 
method elegantly combines design and managerial considerations to 
model more directly the design and decision-making process in opera
tions. A simple decision rule is ‘If demand is higher than capacity by 
threshold Δ, increase capacity by amount Φ, else stay the same’. This 
method is comparable to standard ROA in its ability to value flexibility, 
and it has been shown to handle multiple decision rules and uncertainty 
sources simultaneously [18]. The approach can be combined with sto
chastic programming or robust optimisation to identify the best decision 
variables to design and exercise flexibility in operations e.g., Δ and Φ in 
the example above, and more complex decision rules as well. Important 
benefits compared to traditional ROA is that decision rule-based ROA 
does not require any assumption on market supply and demand, the 
existence of a portfolio of replicating project cash flows, or path inde
pendence, to name a few. It is therefore more amenable to analyse and 
quantify the benefits of flexibility in complex engineered systems, such 
as here. 

Chaize [19] first proposed a flexible approach to SLSD for satellite 
constellation design in 2003. A framework was created that included a 
method for designing SLSD strategies, and a method for valuing their 
flexibility using DA and ROA. Flexibility was valued by comparing the 
ELCC of the optimum SLSD strategy, π*

S, to the optimum traditional 
strategy, π*

T . de Weck et al. [4] extended this framework to a case study, 
revealing a reduction in ELCC of up to 20% in π*

S compared to π*
T . de 

Weck et al. acknowledged the potential for MLSD, encouraging research 
in this area. Lee et al. [5] analysed the value of flexibility in 2-layer 
MLSD under regional demand uncertainty, finding an ELCC reduction 
for the optimum MLSD strategy, π*

M, compared to π*
T of up to 28.9%. 

Bosomworth and Grogan [6] used Chaize’s framework to analyse the 
value of two-layer MLSD for modern constellations. Results showed an 
ELCC reduction for π*

M compared to π*
T of up to 19.5%. Bosomworth and 

Grogan’s results also indicated that π*
M is more cost effective than π*

S. 
Both Lee et al. and Bosomworth and Grogan only considered the 
simplest case of MLSD, with two layers, and this is not representative of 
emerging constellation proposals to the FCC, which contain up to eight 
layers [9]. Therefore, there is a gap in the literature for analyzing the 
economic value that flexibility provides in n-layer MLSD for emerging 
mega-constellations. This will become increasingly important to un
derstand as more multi-layer constellations are approved by the FCC. It 
is hypothesized that the value of flexibility for MLSD is greater than 
SLSD because the new layer real option does not have reconfiguration 

costs. 
The primary objective of this paper is to create a staged deployment 

valuation framework for multi-layer mega-constellations under global 
demand uncertainty. By applying the framework to four case studies 
comparing traditional, SLSD and MLSD systems, the paper has three 
secondary objectives: Firstly, to uncover the value of flexibility in MLSD 
for modern mega-constellations under global demand uncertainty. 
Secondly, to understand the characteristics of optimal deployment 
strategies. And finally, to uncover the mechanisms that can alter the 
effectiveness of these strategies. These contributions aim to help 
constellation engineers incorporate MLSD strategies into their future 
designs. 

3. Methodology: Flexibility valuation framework 

This paper proposes a staged deployment valuation framework for 
multi-layer mega-constellations under global demand uncertainty. It 
includes novel methods for modelling and comparing three types of 
systems: 1) traditional, 2) SLSD, and 3) MSLD. The framework also en
ables analysing the value of flexibility in SLSD and MLSD, which is an 
important metric for quantifying the benefits and costs of the different 
strategies. 

3.1. Terminology 

Explaining the mechanics of the framework requires introducing the 
following terminology:  

1. An orbital shell is a formation of satellites, in circular orbits, that 
share the same orbital altitude [20] (Fig. 1A). An example of an 
orbital shell would be the GPS constellation: A formation of 31 sat
ellites, orbiting Earth at an altitude of 20,180 km [21]. A constella
tion can include multiple layers of orbital shells (Fig. 1B). For 
example, Starlink’s phase-2 constellation proposal has 8 orbital 
shells, whose altitudes range from 570 km to 335 km [20,22].  

2. In a satellite constellation staged deployment strategy, a deployment 
stage refers to the constellations current state.  

3. A deployment path is a sequence of deployment stages (Fig. 1C and 1. 
D). In a staged deployment strategy, a constellation progresses 
through its planned deployment path. In SLSD, all stages consist of a 
single orbital shell (Fig. 1C). In MLSD, a stage can have multiple 
layers of orbital shells (Fig. 1D). 

3.2. Framework overview 

The framework is split into three parts (Fig. 2): 

Fig. 1. Diagrammatic representations of A) a single orbital shell, B) three layers 
of orbital shells, C) a three-stage, single-layer deployment path, and D) a three- 
stage, multi-layer deployment path. 
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1. Generating orbital shells. Orbital shells are generated to serve as 
building blocks for traditional and staged deployment strategies. The 
cost components and capacity for each orbital shell is calculated, 
which is used for the valuation of traditional strategies and the 
generation of deployment paths.  

2. Generating deployment paths. Each staged deployment strategy is 
modelled as a deployment path. The cost components and capacity 
for each stage in each path are calculated, which is used for the 
valuation of staged deployment strategies.  

3. Optimizing deployment strategies. Traditional and staged 
deployment strategies are optimised through a full exploration of the 
problem space. The value of flexibility of SLSD and MLSD can then be 
determined by comparing the ELCC of the optimum SLSD and opti
mum MLSD strategies to the optimum traditional strategy. 

3.2.1. Generating orbital shells 
An orbital shell, α, is modelled using the design vector: 

α= [D P f I a e ] (1) 

The design variables are the satellite antenna diameter, D, satellite 
transmitter power, P, downlink frequency, f , inter-satellite-link topol
ogy, I, orbital altitude, a, and minimum elevation angle, e. This design 
vector can be split into two sub-vectors:  

1. Satellite design λ = [D P f I ]. This vector represents the satellite 
design for all the satellites in the orbital shell. 

2. Formation κ = [ a e ]. This vector represents the geometric forma
tion of satellites in the orbital shell. 

An orbital shell can therefore also be equivalently defined in terms of 
λ and κ: 

α= [ λ κ ] (2) 

Orbital shells are assumed to have global coverage, which signifi
cantly simplifies modelling and analysis. To achieve global coverage, 
orbital shells are assumed to have a polar inclination of 97.6◦. This 
inclination is chosen because it is used by the polar orbital shells in the 
Starlink constellation [22], which matches the papers scope of satellite 
internet mega-constellations and global demand for satellite internet. 

A traditional deployment strategy, πT , is modelled as a single orbital 
shell (Equation (3)) (Fig. 1A). Iridium and Globalstar are examples that 
used this strategy: deploying a formation of satellites, in circular orbits, 
sharing same orbital altitude. 

πT =α (3) 

A tradespace of orbital shells (the α tradespace) is generated to serve 
as building blocks for deployment strategies. Each of the six individual 

components of the design variable, α, take a range of values as an input. 
The tradespace contains all permutations of values for the six design 
variables. 

3.2.1.1. Geometry model. The geometry model calculates the total 
number of satellites in an orbital shell, Ntot , based on its altitude, a, and 
minimum elevation angle, e. Ntot is then used in cost and capacity 
calculations. 

Firstly, the radius of a satellite’s footprint, rfoot, is calculated. rfoot is 
then used to derive the number of satellites per plane, Ns, and number of 
planes, Np. This determines the total number of satellites, Ntot. More 
details on the geometry model can be found in Appendix C. 

3.2.1.2. Capacity model. The capacity model calculates the collective 
capacity of all satellites in an orbital shell based on its satellite design, λ, 
formation, κ, and total number of satellites, Ntot. The capacity model first 
calculates the data rate, Rd, using a link budget equation (Equation (4)) 
adapted from the Space Mission Engineering Textbook [23] and Bos
omworth and Grogan [6]. The Starlink satellite design is used as a 
benchmark to calibrate the link budget equation, with parameter values 
sourced from Portillo, Cameron, and Crawley [24] (Appendix D). Sat
ellites are assumed to use multi-frequency time-division multiple access 
(MF-TDMA), as used in previous staged deployment frameworks [6,19], 
and is the case for Starlink. This enables the use of Chang and de Weck’s 
capacity calculation (Equation (5)) [25] to derive the total capacity of 
the constellation, captot , from the data rate. Other parameters in Equa
tion (5) are sourced from Portillo, Cameron, and Crawley [24], and FCC 
filings [9]. 

Rd =EIRP − G/T − Ltot − k − Eb/N0
(4)  

captot = nsats⋅
Z

2K
Bsat

BT + BG

RbTf − F
nbits + RbTG

(5) 

The active capacity of the constellation, capact , is determined by the 
global percentage utilization of the orbital shell, US, which represents 
the percentage of satellites serving users at any given time. This con
siders satellites flying over uninhabited areas such as the ocean or 
mountains. With no inter-satellite links (ISLs), US is around 10% [26]. 
This increases to 70% for a ring ISL topology [6], and to 90% for a mesh 
ISL topology [6]. ‘Constellation capacity’ from this point onwards refers 
to capact . 

capact = captot⋅US (6)  

3.2.1.3. Cost model. The cost model calculates cost components for 
each orbital shell, which are used to calculate the ELCC for each 
deployment strategy. The cost components are the initial development 
cost, CID, production cost, CP, launch cost, CL, onboard and maintenance 

Fig. 2. High level overview of the proposed staged deployment valuation framework.  
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cost, COM, and reconfiguration cost, CR. There are three ways in which a 
constellation can incur costs:  

1. Initial Deployment: Cost = CID + CP + CL + CR  
2. Maintenance: Cost = COM  
3. Evolving to the next stage: Cost = CP + CL + CR 

The Small Satellite Cost Model (SSCM) [27] is used to derive four of 
the cost components: CID, CP, CL, and COM. The SSCM uses the total dry 
mass, mtot, of a satellite to calculate cost components. mtot is estimated 
using the input parameters D, P, and I (Equation (7)). The Starlink sat
ellite design is used as a benchmark for estimating dry mass because it 
resembles the satellite designs used in the papers case studies and is well 
documented. The benchmark constants used are the Starlink satellite’s 
total dry mass, md = 260kg, transmitter power, Pd = 2200W, and an
tenna diameter, Dd = 3.5m. The total dry mass is assumed to scale lin
early with power, and quadratically with antenna diameter. Finally, the 
presence of ISLs is assumed to scale the dry mass. This is captured 
through mI, which has the value of 1, 1.05 or 1.2 for no ISLs, ring ISLs, 
and mesh ISLs, respectively. 

mtot =md⋅
(

P
Pd

)

⋅
(

D
Dd

)2

⋅mI (7) 

The SSCM uses mtot to derive 26 separate costs. These costs are used 
to derive the following cost components for each orbital shell: CID is 
calculated by summing all non-recurring costs. CP is calculated by 
summing all structural recurring costs. COM is equal to the Launch & 
Orbital Operation Support (LOOS) recurring cost. CL is calculated by 
multiplying the cost of a Falcon 9 rocket launch by the number of 
required launches. 

The SSCM is selected over the other publicly available cost model, 
the Unmanned Space Vehicle Cost Model (USCM) [28]. This is because 
unlike USCM, the SSCM is scoped for satellites with a dry mass <1000 
kg, which is typical for satellites used in mega-constellations. 

The reconfiguration cost, CR, cannot be derived from the available 
cost models, therefore a new method for calculating CR is proposed: CR is 
assumed to be the cost for additional fuel and tank space required to 
enable reconfigurations. This cost is incurred when the satellite is pro
duced, not during a reconfiguration itself. The cost of additional fuel and 
tank space is modelled as a percentage of the production cost, rec, 
multiplied by the reconfiguration capacity of a satellite, τ. 

CR =CP*rec*τ (8) 

The reconfiguration capacity of a satellite is determined by the 
staged deployment strategy, and is discussed in B.2.2. 

Whenever a cost C is incurred, its present value PV is calculated 
based on the discount rate r at the time t (years) the cost is incurred, 
starting from t = 0: 

PV(C)=
C

(1 + r)t (9) 

Discounting is used to account for the time value of money. The value 
of r can only be estimated and is different between applications and 
industries. 

3.2.2. Generating deployment paths 
A staged deployment strategy is modelled as a deployment path, ξ 

(Fig. 1C and D): a constellation follows the deployment path from the 
first stage, S1, to the Nth stage, SN: 

ξ= [ S1 ⋯ SN ] (10) 

A stage, S, is comprised of layers of orbital shells. The number of 
layers in a given stage, L, is between one and a specified maximum, Lm: 

S= [α1 ⋯ αL ] where 1 ≤ L ≤ Lm (11) 

Staged deployment strategies include SLSD strategies and MLSD 
strategies. For an SLSD strategy, πS, all stages must contain only one 
orbital shell (Equation (12)). For an MLSD strategy, πM, a stage can 
contain multiple layers of orbital shells (Equation (13)). Examples of 
SLSD and MLSD strategies using this notation are shown in Fig. 3. 

πS = ξ, where Lm = 1 (12)  

πM = ξ, where Lm > 1 (13)  

3.2.2.1. Deployment path constraints. The following constraints are 
applied to deployment paths to ensure that only practical deployment 
paths are generated: 

cap(x+ 1)≥ cap(x) ⋅ J where J ≥ 1 (C1)  

elayer ​ i ≥ einitial∀i (C2)  

λlayer ​ i = λinitial ∀i (C3)  

L ≤ Lm (C4) 

Constraint (C1) states that the next stage (x+ 1) must have a higher 
constellation capacity than the current stage (x). This is because if the 
next stage has a smaller constellation capacity than the current stage, it 
implies that satellites will be prematurely de-commissioned – this is 
more expensive to do than simply leaving satellites in orbit, and is thus 
economically disadvantageous. This highlights that staged deployment 
is only flexible in one direction – as demand increases. The variable J is 
explained in section B.2.2. Constraint (C2) states that the minimum 
elevation angle, e, cannot decrease below the initial e. This rule gua
rantees that all receivers from the initial deployment will have a con
stant signal. Constraint (C3) specifies that all satellites in the 
constellation share the same satellite design throughout the constella
tion’s lifetime. This constraint is used in prior literature to acknowledge 
that once deployed, the satellite design is difficult to change for physical 
or strategic reasons [4,6,17]. Secondly, this constraint enables consid
erable simplifications in the implementation of the framework. 
Constraint (C4) states that the number of layers in the current stage, L, 
cannot exceed the maximum layers, Lm, of this staged deployment 
strategy. 

3.2.2.2. Reducing the problem space. Previous frameworks find the 
globally optimum staged deployment strategy by searching through the 
entire set of all possible deployment paths that satisfy the deployment 
constraints, Ξ. In the context of modelling multi-layer constellations, 
this approach yields an impractically large problem space (For example, 
there are 1.4⋅10553 possible deployment paths in Ξ for this papers pri
mary case study). This necessitates a new method for finding optimal 
deployment paths. 

A more direct search algorithm for finding optimal deployment paths 

Fig. 3. Examples of deployment paths in their mathematical representation, 
including their orbital shells, stages, and evolution types (new layer or recon
figuration). Top: An SLSD deployment path (Lm = 1). Bottom: An MLSD 
deployment path, where.Lm = 2 
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has not been implemented in prior literature that uses deployment paths 
because there is no clear way to compare similarity between deployment 
paths in Ξ (Fig. 4, right): This makes it difficult to infer a route to an 
optimal solution, for example using a genetic algorithm. 

The proposed search method maintains the full search of a set of 
deployment paths, however the set it searches is significantly reduced 
compared to Ξ as used in prior literature. This is achieved through two 
procedures:  

1. For each family of orbital shells sharing the same satellite design,1 all 
non-Pareto optimal orbital shells in that family are removed (A 
Pareto optimal orbital shell maximises capacity and minimizes 
ELCC). This stems from the observation that the optimal deployment 
path for a given family is always composed of Pareto optimal orbital 
shells in that family. This means that non-Pareto optimal orbital 
shells will never contribute to an optimal strategy, and therefore can 
be removed.  

2. Staged deployment strategies are represented by a new staged 
deployment design vector, ψ. This vector is decoded into a close-to- 
optimal deployment path, ξ∼. The design variables in ψ are chosen 
such that: 
a. The ψ tradespace contains a practical number of staged deploy

ment strategies to be explored (45,000 compared to 1.4⋅ 10553 in Ξ 
for the papers primary case study).  

b. A wide range of deployment strategies is explored.  
c. A staged deployment strategy can be summarised in a simpler, 

more concrete way than as a deployment path. 

ψ is composed of three design variables: ψ = [ λ J Lm ].  

1. Satellite design, λ, is a fundamental property of a deployment path, 
because of the constraint (C3) that all satellite designs must be the 
same for a given deployment path.  

2. Capacity jump, J, specifies the minimum jump in capacity between 
stages (As shown in rule C1). Capacity jump is a chosen variable 
because it presents an important trade-off involving flexibility and 
reconfiguration costs: When J is low, there are many stages in ξ. This 

enables high flexibility, but high reconfiguration costs. Whereas 
when J is high, flexibility1 is low, but so are the reconfiguration costs.  

3. Maximum layers, Lm, specifies the maximum number of layers 
allowed in any given stage in ξ. Lm is a chosen variable because it can 
be used to assess the effectiveness of increasing layers on ELCC, and it 
differentiates between πS (where Lm = 1) and πM (where Lm > 1). 

ψ is converted into ξ∼ using a fixed function decodePath, which has 
the following high-level steps:  

1. For the first stage, select the Pareto optimal orbital shell with the 
lowest constellation capacity that is greater than or equal to 
demstart ⋅J. This step replicates a characteristic of optimal paths 
observed from Chaize’s results [19].  

2. A new layer is added in each subsequent stage, until Lm layers of 
orbital shells have been deployed. When adding a new layer, select 
the Pareto optimal orbital shell with the lowest capacity that satisfies 
the deployment path constraints.  

3. The remaining stages are deployed as reconfigurations. For each 
subsequent stage, select the layer and Pareto optimal orbital shell to 
reconfigure to which results in the smallest jump in capacity that 
satisfies the deployment path constraints.  

4. Finish the path once the constellation capacity is greater than demexp. 

It is not guaranteed that any of the paths encoded in the ψ tradespace 
are globally optimal because not every path containing only Pareto 
optimal shells is explored. However, a suite test cases for small Ξ show 
that the ELCC of the optimal single-layer strategy found using 
decodePath is on average 0.41% higher than the ELCC doing a full search 
of Ξ. This demonstrates that decodePath is capable of producing close-to- 
optimal paths in a significantly reduced problem space. 

3.2.3. Optimizing deployment strategies 
The optimal strategies π*

M, π*
S and π*

T are strategies that minimise 
ELCC in their respective deployment approaches. A strategy’s ELCC is 
calculated using an objective function that simulates the strategy. The 
optimisation is performed by running a full search on all possible stra
tegies that can be created from the α and ψ tradespaces. 

π*
T is found by minimising the objective function ELCCπT (πT), where 

πT is the variable to optimize. π*
T is constrained by cap(πT) > demexp, 

meaning that a traditional strategy must be an orbital shell with a ca
pacity greater than the expected future demand after a specified time
frame, demfinal. This constraint models the traditional approach of 
deploying an orbital shell upfront with a capacity that accommodates 
the expected future demand, and has been modelled previously [6,19]. 
In ELCCπT (πT), the initial deployment cost is incurred at the start of the 
simulation. The onboard and maintenance cost is then incurred at every 
time step. 

π*
S and π*

M are both found by minimising the objective function 
ELCCψ(ψ). π*

S is constrained by Lm = 1. π*
M is constrained by Lm > 1. In 

ELCCψ(ψ), a staged deployment strategy, ψ, is decoded into its corre
sponding close to optimal deployment path, ξ∼. This path is then 
simulated through pre-computed demand scenarios. The initial devel
opment cost is incurred at the start of the simulation. Every time the 
current demand exceeds the constellation capacity of the current stage 
in ξ∼, the constellation evolves to the next stage in ξ∼. The corre
sponding evolution cost is then incurred. The onboard and maintenance 
cost for the current stage is incurred at every time step. 

In both objective functions, increasing the expected final demand, 
demexp, will increase ELCC since larger, more expensive constellations 
will have to be deployed to accommodate the demand. 

3.2.3.1. Demand model. The demand model generates stochastic de
mand scenarios, which are used to value the ELCC of staged deployment 
strategies. Demand scenarios are modelled using geometric Brownian 

Fig. 4. An example of the creation of the set of all deployment paths (that 
satisfy the deployment path constraints), Ξ, from an orbital shell tradespace 
containing three orbital shells. The deployment paths in Ξ are limited to a single 
layer (Lm = 1). The number of deployment paths in Ξ increases hyper- 
exponentially with 1) the number of orbital shells and 2) the maximum 
layers, Lm. 

1 The requirement to segment into families stems from deployment path 
constraint C3. 
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motion (GBM) (Fig. 5), which simulates growth as a percentage drift, μ, 
with percentage volatility, σ: 

demt = demstart⋅e

((

μ− σ2
2

)

t+σWt

)

(14)  

where demt is the demand at time t, demstart is the starting demand, and 
Wt is the Wiener process. μ is calculated based on demstart , demfinal, and 
total simulation time, T: 

μ=
ln
(

demexp
demstart

)

T
(15) 

10,000 stochastic demand scenarios are generated to ensure that 
strategies are assessed against a representative sample of possible 
scenarios. 

Note that traditional strategies are not simulated against stochastic 
demand scenarios. They are instead simulated based on the future ex
pected demand, demexp. This is because their optimal strategy, and hence 
ELCC, only depends on demexp. The interpretation of this is that tradi
tional strategies deploy to meet the expected demand, and don’t adapt, 
regardless of the demand scenario, thus offering no flexibility. 

3.3. Case studies 

Four case studies are analysed to achieve the secondary objectives of 
this paper. The first case study analyses the characteristics of optimal 
MLSD strategies. The subsequent three case studies analyse the value of 
flexibility (VoF) in SLSD and MLSD, and the mechanisms which can alter 
it. 

VoF represents the expected savings from using the proposed optimal 
staged deployment strategy over an optimal traditional strategy, used as 
benchmark. It gives system engineers an indication of how much they 
should be willing to pay to embed this flexibility into the system design, 
since this design will typically differ significantly from a traditional 
design approach. If the cost is less than the expected savings, a staged 
deployment approach should be favored over a traditional design. 

All case studies share the same tradespaces. The orbital shell 
tradespace (Table 1) is based off Bosomworth and Grogan [6], who 
explored mega-constellation orbital shells. The 20 km interval of orbital 
altitude reflects the smallest orbital intervals currently approved by FCC 
(Kuiper Constellation [29]). There are a total of 65,880 orbital shells in 
the tradespace. 

The staged deployment strategy tradespace (Table 2) is designed to 
provide a range of staged deployment strategies. Capacity jump ranges 
from 1.2, enabling very high flexibility, to 15, which results in a 2–3 
stage deployment strategy. Maximum layers, Lm, ranges from 1 
(covering SLSD), to 5 (the average number of layers in the largest 

modern mega-constellations currently approved by the FCC [9,29]). 
All fixed demand scenario parameters (Table 3) are shared between 

case studies (Table 4), and are chosen to reflect demand forecasts from 
2019 to 2029 by Northern Sky Research (NSR) [1]. A fine time step of 
1/48 years (≈ 2 weeks) results in detailed demand scenarios, which 
allows a wide range of possible scenarios to be explored. 

Case studies differ in their values for three scenario parameters: the 
discount rate, r, reconfiguration cost, rec, and volatility, σ. These pa
rameters are chosen because they are each expected to affect the VoF in 
a staged deployment strategy. A nominal value is chosen for each 
parameter to estimate realistic scenarios: r = 10% is a commonly chosen 
value for space based projects. σ = 30% produces demand scenarios that 
fluctuate within the upper and lower bounds of demand forecasts by 
NSR [1]. A nominal value for rec is harder to determine since rec is a 
novel concept in this framework, and therefore no nominal value of rec 
exists in prior literature. It is estimated by finding a value for rec that 
minimizes the discrepancy in results to prior literature, in particular, the 
value of flexibility, VoF, and reconfiguration capacity, τ. When bench
marked against case studies in prior literature, the value of rec which 
minimized differences in VoF and τ was 22% : This value leads to a VoF 
= 20.2% for SLSD, in line with de Weck [4] (where VoF = 20%). It also 
leads to τ = 3 in 2-layer MLSD, in line with Bosomworth and Grogan [6] 
(where τ = 3), and τ = 1, approaching Lee et al. [5] (where τ = 0). 

The first case study simulates a single case with nominal parameter 
values. The subsequent three case studies each simulate 50 cases that 
explore a range of values for one of the parameters, keeping the other 
parameter values nominal. 

A primary application of the framework is to analyse VoF for SLSD 
and MLSD as compared to a benchmark traditional system (Equations 
(16) and (17)). It quantifies the reduction in ELCC from using an optimal 
flexible strategy as compared to the optimal traditional benchmark 
strategy. 

VoFSLSD =
ELCCπ*

T
− ELCCπ*

S

ELCCπ*
T

(16)  

VoFMLSD =
ELCCπ*

T
− ELCCπ*

M

ELCCπ*
T

(17) 

Fig. 5. Example of a demand scenario, with a 3-stage SLSD strategy (top) and 
an 8-stage, 3-layer MLSD strategy (bottom). 

Table 1 
Orbital shell, α, tradespace ranges.  

Variable Units Bounds Step Discrete Values 

Antenna Diameter, D m 2–4 0.5 – 
Transmitter Power, P W 200–2200 400 – 
Frequency Band, f GHz – – 15, 30 
ISL Geometry, I – – – None, Ring, Mesh 
Altitude, a km 400–1600 20 – 
Min Elevation, e degrees 10–60 10 –  

Table 2 
Staged deployment strategy, ψ, tradespace ranges.  

Variable Range Step 

Capacity Jump, J 1.2–15 0.2 
Max Layers, Lm 1–5 1 
Satellite Design, λ (Based on Orbital Shell Tradespace Ranges)  

Table 3 
Fixed demand scenario parameters.  

Variable Units Value 

Simulation Time, T Years 10 
Time step, δt Years 1/48 
Starting demand, demstart Subscribers (M) 0.05 
Expected future demand, demexp Subscribers (M) 15  
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4. Results and discussion 

The proposed framework and case studies in section III are used to 
analyse the value of flexibility, VoF, for SLSD and MLSD systems. This is 
because VoF can be affected significantly by prior modelling assump
tions about discount rate, r, reconfiguration cost, rec, and volatility, σ. 
This analysis also helps uncover important design mechanisms to deal 
with uncertainty, as discussed below. 

The results of the nominal case study (Table 5) show that the VoF for 
MLSD, 42.8%, is almost double the VoF for SLSD, 22.9%, indicating that 
cost savings could approach twice that of MLSD compared to SLSD, both 
in respect of a traditional design. The nominal case study also indicates 
characteristics of the optimal strategies for the traditional, SLSD, and 
MLSD approaches. The optimal strategies share the same values for 
three of the four satellite design variables: D = 2m, f = 30GHz, I =

Mesh. P is low, ranging from 200 − 250W. Strategies with these satellite 
designs have a set of orbital shells which are close to or on the Pareto 
front. These results indicate that optimum strategies favour small sat
ellites with higher downlink frequencies, consistent with the findings in 
Bosomworth and Grogan [6]. MLSD has a smaller capacity jump than 
SLSD because the cost savings from reducing reconfigurations permits 
more evolutions, which is achieved by smaller jumps in capacity. 

The results of case studies 2–4 (Fig. 6) show how the VoF for SLSD 
and MSLD changes with changing discount rate, reconfiguration cost, 
and volatility. 

Case study 2 (Fig. 6A) shows that the VoF for both SLSD and MLSD 
increases with increasing discount rate, r. This is because future costs are 
more heavily discounted with increasing r, thereby providing additional 
benefits for more modular flexible design strategies that deploy capacity 
later. The rate of increase in VoF slows because the initial development 
cost remains undiscounted, which proportionally takes up more of the 
ELCC as r increases. The fluctuations in VoF for case studies 2–4 are a 
result of noise from the stochastic demand scenarios. This can be 
reduced by simulating more scenarios for each case. 

Case study 3 (Fig. 6B) shows that the VoF for MLSD is highly resilient 
to changes in reconfiguration cost, rec, with VoF = 42.8%. The VoF for 
SLSD however decreases linearly with increasing rec, where VoF =
46.5% when rec = 0%, and VoF = − 4.9% when rec = 50%. A negative 
VoF means that the value of embedding flexibility in the design is 

superseded by its cost – which is rare here, and as confirmed in many 
other studies [13]. The VoF for MLSD is resilient to reconfiguration costs 
after rec = 3.1% because in every subsequent case, π*

M has sufficiently 
high values for Lm and J that there are no reconfigurations in the 
deployment path, which makes VoF independent of rec. MLSD is less cost 
effective than SLSD when rec is very low (rec < 1.8%). The mechanism 
explaining this is in sub-section A. 

Case study 4 (Fig. 6C) shows that the VoF for both SLSD and MLSD 
increases with increasing volatility, σ. This is consistent with prior 
literature on real options and flexibility in design [3,12,14], where 
optionality is increasingly valuable when a system is facing increasing 
volatility. It reinforces the intuition that in a world fraught with irre
ducible uncertainty, flexibility can be extremely valuable. 

4.1. Mechanisms that affect the value of flexibility in staged deployment 

It is important for system engineers to understand the mechanisms 
that affect the VoF in flexible SLSD and MLSD systems to make the most 
informed design decisions. Six such mechanisms have been identified 
using this framework. 

Firstly, low-capacity orbital shells (LCOs) are less cost effective than 
high-capacity orbital shells (HCOs). LCOs have high altitudes and low 
minimum elevation angles, which both increase the path distance be
tween a satellite and a receiver. Increasing path distance increases signal 
attenuation from space (path loss), which lowers the capacity per sat
ellite. This makes LCOs cost ineffective compared to HCOs. The tradi
tional approach always deploys an HCO with a capacity greater than 
demexp, whereas the staged deployment approaches initially deploy 
LCOs. This makes the staged deployment approaches less cost effective 
than the traditional approach initially, which is further penalised by the 
discount rate. 

Secondly, when J is small, launch costs are disproportionately high. 
Each evolution requires at least one rocket to launch new satellites. A 
small jump in capacity, however, results in a small payload relative to 
the payload capacity of the rocket. This leads to significant empty space 
during launches, which greatly increases the cost to launch per satellite 
for small values of J. This mechanism is becoming less significant as 
modern ride-sharing services such as the SmallSat Rideshare Program by 
SpaceX are becoming more widespread [30]. 

Thirdly, as J decreases, the reconfiguration cost increases. This is 
because decreasing J increases the number of evolutions, which in
creases the required reconfiguration capacity per satellite. 

The following two mechanisms increase the VoF for MLSD by 
reducing the required reconfiguration capacity of satellites: 

Increasing Lm decreases the number of reconfigurations in a 
deployment path. This is because a deployment path has Lm new layer 
evolutions, and the remaining evolutions (if any) are reconfigurations. 
Decreasing reconfigurations in the deployment path reduces the 
required reconfiguration capacity per satellite. 

Increasing Lm decreases the number of reconfigurations per layer. 
This is because during a reconfiguration evolution, only one layer is 
reconfigured. Therefore, the more layers there are, the fewer reconfi
gurations are required per layer. This decreases the required reconfi
guration capacity per satellite, τ. 

The final mechanism decreases the VoF for MLSD relative to SLSD. 
For early stages in MLSD, capacity is increased by deploying an LCO as a 
new layer, while for early stages in SLSD, capacity is increased by 
reconfiguring into a higher capacity orbital shell. This initially makes 
VoFMLSD lower than VoFSLSD. If rec = 0%, this mechanism leads to 
VoFMLSD being lower than VoFSLSD overall. 

4.2. Study limitations 

The framework is limited to modelling orbital shells with a Streets-of- 
Coverage (SoC) design. The most common design used in mega- 

Table 4 
Case studies and their parameter values.  

Case Study Discount 
Rate, r (%) 

Reconfiguration Cost, 
rec (%) 

Volatility, σ 
(%) 

1 – Nominal 10 22 30 
2 – Variable Discount 

Rate 
0–20 22 30 

3 – Variable 
Reconfiguration Cost 

10 0–50 30 

4 – Variable Volatility 10 22 0–60  

Table 5 
Optimal strategies in nominal case study.  

Variable Units Approach 

Traditional SLSD MLSD 

Antenna Diameter, D m 2 2 2 
Transmitter Power, P W 200 200 250 
Frequency Band, f GHz 30 30 30 
ISL Geometry, I – Mesh Mesh Mesh 
Altitude, a km 520 – – 
Min Elevation, e degrees 50 – – 
Capacity Jump, J % – 9.2 5.4 
Maximum Layers, Lm Layers – 1 5 
Expected Lifecycle Cost, ELCC $M 1088 839 622 
Value of Flexibility, VoF % – 22.9 42.8  
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constellations is the Walker design, followed by the SoC design. Walker 
designs are not modelled because they often have non-polar orbital in
clinations (unlike SoC) - This is problematic for two reasons: Firstly, the 
geometry model becomes increasingly inaccurate at deriving the total 
number of satellites in an orbital shell with low inclinations. Secondly, 
the inclination of a Walker design can make a huge difference to how 
many people are able to access its services. This is not factored into the 
current framework. Factoring in the percentage of global demand that 
can access the Walker designs shell based on its inclination adds a sig
nificant layer of complexity that is outside the scope of this paper, - but 
would nonetheless be an interesting avenue for future research. 

The case study has some limitations that also offer avenues for future 
research. Firstly, only costs are considered, not revenues from sub
scribers. This is sufficient to show the relative cost effectiveness of the 
three deployment approaches, but insufficient to verify their economic 
feasibility. 

Secondly, the reconfiguration cost is assumed to scale linearly with 
the number of required reconfigurations to minimise complexity. A 
linear relationship may not be the case: Parametric cost models such as 
the SSCM and USCM use cost estimating relationships (CERs) to 
generate cost estimates [31]. CERs are calculated by analysing historic 
data, which often reveal logarithmic, quadratic, and exponential 
relationships. 

Thirdly, the reconfiguration cost is assumed to be incurred whenever 
a new satellite is produced. However, designing a satellite to enable 
reconfigurations will also incur cost during the initial development, 
which is not considered in the framework to minimise complexity. This 
decreases the reliability of ELCC comparisons between π*

M and π*
S. 

4.3. Significance of outcomes 

Results of the nominal case study show that flexible single-layer and 
multi-layer staged deployment are cost effective compared to traditional 
deployment, reducing ELCC by an average of 22.9% and 42.8%, 
respectively. This is in line with previous results in the literature [4–6]. 

The cost effectiveness of multi-layer compared to single-layer staged 
deployment is less clear because the reconfiguration cost is not known. 
However, multi-layer staged deployment is likely to increase in cost 
effectiveness in the near future for three reasons: firstly, launch costs are 
continuing to decrease [32]. Secondly, smaller rockets are emerging on 
the market, enabling small jumps in capacity to be more cost effective. 
Thirdly, reconfiguration costs are unlikely to decrease in the near future 
because recent advancements in propulsion technology such as solar 
sails are unsuitable for the application of orbital reconfiguration. 

Flexible multi-layer staged deployment therefore holds potential to 
significantly reduce ELCC in modern constellations. This has both eco
nomic and social implications. If this is achieved, the market for space- 
based internet systems is likely to grow. Such approach would make 
better use of limited financial and material resources (i.e., deploy 

additional capacity only if and when it is needed), thus contributing in 
the long term to better financial and environmental sustainability, 
reduced pollution from launches, and space junk. As shown in Fig. 6, it 
would contribute better resilience in the face of global demand uncer
tainty. Internet access could become more widely available for users in 
remote areas with limited Internet access, thus contributing to wider 
access to knowledge, and education. Satellite internet could also become 
more competitive with terrestrial networks, making internet access 
more affordable for all users. In a world where connectivity is increas
ingly important for society and the economy, multi-layer staged 
deployment could play an important role in enabling such new global 
connectivity. 

5. Conclusion 

5.1. Overview and contributions 

Multi-layer staged deployment (MLSD) is a promising approach to 
deploy satellite constellations that has emerged from recent advances in 
satellite technology. 

This paper’s primary contribution is the proposal of a staged 
deployment valuation framework for flexible multi-layer mega-con
stellations under global demand uncertainty. The framework has a novel 
approach for modelling staged deployment strategies to reduce the large 
problem space whilst exploring a variety of strategies. The framework’s 
approach for valuing flexibility in staged deployment strategies builds 
on previous methods by incorporating a model for reconfiguration cost. 
A decision support system is designed and implemented to rapidly 
prototype, test and optimize staged deployment strategies2 The frame
work and decision support system are applied to four case studies based 
on market projections. The results and discussion of these studies pre
sent the following contributions which reflect the papers secondary 
objectives:  

1. Flexible MLSD is shown to decrease the expected lifecycle cost 
compared to traditional deployment by 42.8%. MLSD is shown to be 
more cost effective than single-layer staged deployment (SLSD), even 
with low reconfiguration costs, confirming the papers hypothesis. A 
sensitivity analysis reveals that MLSD has improved resilience to 
uncertain parameters compared to SLSD.  

2. Optimal MLSD strategies have small, low power satellite designs, 
which are deployed into many layers.  

3. Six cost altering mechanisms are identified, which explain how and 
why the expected lifecycle cost of flexible strategies can change. 

Framework limitations and significance of outcomes are discussed. 

Fig. 6. Value of Flexibility in MLSD and SLSD for under variable A) reconfiguration cost, B) discount rate, and C) volatility.  

2 Details on the decision support system can be found in the appendix. 
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The framework, decision support system, and cost altering mechanisms 
introduced provide tools for constellation designers to reduce constel
lation costs by exploring multi-layered staged deployment. In doing so, 
it is hoped that the market for satellite internet will continue to grow, 
providing internet access for anyone, anywhere, at any time. It will also 
contribute to better financial and environmental sustainability in the 
long term, reduced pollution, and space junk. 

5.2. Future work 

The framework could be further developed by modelling Walker 
constellation designs. Doing so would allow the framework to more 
accurately model modern mega-constellations and analyse their effec
tiveness. Modelling satellite lifetime into the framework could improve 
its fidelity: some low Earth orbit constellations such as Lynk Smallsat 
System [33] only have a lifetime of 2–3 years. In this case, there is an 
opportunity for future work to explore a replenishment strategy over a 
reconfiguration strategy. Other potential strategies could be explored: a 
‘combine’ evolution where two layers reconfigure into one could 
improve cost effectiveness without requiring any launch costs. A 

detailed demand threshold could be investigated, where evolutions are 
only triggered when demand reaches a percentage of capacity and for a 
set duration. This could avoid triggering evolutions for temporary peaks 
in demand. Triggering evolutions based off an exponential trendline of 
demand could help model the trajectory of demand more accurately. A 
future study could explore how revenues affect the economic feasibility 
of staged deployment: Modelling a starting budget with revenues could 
dismiss strategies that run out of budget during a deployment mission. 
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Appendix 

A. Decision Support System 

A Decision Support System (DSS) was built to enable rapid testing for the proposed framework. All the results in this paper were calculated using 
the DSS. It is written in JavaScript, and consists of 5000+ lines of code, across 300+ functions. It allows constellation designers to rapidly model and 
assess the value of single-layer and multi-layer staged deployment strategies for mega-constellations (Fig. 7). The DSS contains the following features:  

1. Constellation visualiser: A detailed visualisation suite enables system designers to see a visual depiction of constellation strategies. Strategies can 
be played and paused in time for randomly generated demand scenarios. Approaches can be directly compared for the same demand scenario to 
uncover design insights. A strategy’s deployment path is visualised and graphed against the current demand scenario to see how capacity increases 
through time.  

2. Tradespace visualiser: The orbital shell tradespace can be visualised to see the relationships between orbital shells in terms of cost and capacity.  
3. Simulation configuration: All scenario parameters and tradespace ranges can be adjusted to run specific tests.  
4. Results summary: Optimal results are displayed for each case analysed in the simulation.  
5. Heatmap generator: Heatmaps can be heavily customised through a wide range of input and output options. These can reveal hidden relationships 

between two variables.  
6. Save and load results: Results are compressed using a custom compression algorithm to minimise file size. 

7.Loading screen: During simulation, a visual loading screen shows progress, current case and strategy are displayed, and the estimated time 
remaining is calculated  
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Fig. 7. A collection of screenshots from the developed Decision Support System. Spiralling clockwise from top left corner: visualisation suite, results panel, orbital 
shell tradespace explorer, configuration panel, constellation visual comparisons, heatmap generator, and loading screen 

B. Performance Optimisation in DSS 

An important consideration when designing the DSS was the optimisation performance. Increasing performance allows more tests, results, and 
insights. The following performance enhancing strategies improved the speed of optimisation by a factor of over 3000 compared to the original design. 
Two key performance enhancers were implemented: 

Firstly, discount values were pre-calculated. Every time a cost is incurred after t = 0, it needs to be discounted using Equation (9). Discounting 
requires exponentiation, a relatively costly operation computationally when compared to the other mathematical operators. Discounting is the most 
repeated calculation in the optimisation, for the papers case study, it is executed over 5 billion times. To stop the same discount values being 
recalculated every demand scenario, the discount value at every time step was pre-calculated at the beginning of the optimisation and stored in a 
lookup table. Discounting now only requires multiplying a cost by the discount value at the corresponding time step. Pre-calculating discount values 
improved performance by a factor of 100. 

Secondly, memoization was used for calculating COM costs. Calculating COM is amongst the most repeated calculations in the optimisation. To 
calculate COM, the recurring LOOS cost needs to be exponentiated using a learning factor L, based on the current number of satellites in the 
constellation. The number of satellites only changes when an evolution occurs, which is in the order of 1% of steps. Therefore, many calculations are 
repeated. This situation is a good candidate for memoization. Memoization is an optimisation technique where results for an expensive function are 
stored in a cache. If a given input has been calculated before, the corresponding output is taken from the cache, otherwise the output is calculated and 
added to the cache. Using memoization improved performance by a factor of 20. 

Other smaller performance enhancers were implemented, including calculating deployment paths per case instead of per demand scenario, bulk 
calculating COM costs, and only running one demand scenario when σ = 0. 

C. Geometry Model Details 

The geometry model calculates the orbital arrangement of satellites based on an orbital shell’s formation κ = [ a e ]. The formation is defined in 
terms of the number of orbital planes, Np, and satellites per plane, Ns. These determine the number of satellites in the constellation, which is used by 
the cost and capacity models. The geometry model first calculates the dimensions of a single satellite’s footprint. This is then used to determine the 
smallest arrangement of satellites that achieves global coverage. 

Calculating satellite footprint, 
[
z rfoot

]
, from minimum elevation angle e and altitude a. 

A satellite’s footprint is the area of coverage provided by the satellite. It can be defined geometrically as a circle, with a distance from the centre of 
the Earth z, and footprint radius, rfoot. These variables can be derived from the minimum elevation angle, e, altitude a, nadir angle, η, and earth central 
angle, γ. The relationship between these variables is shown in Fig. 8. 

The sine rule can be used to derive η: 

sin(η)
rearth

=
sin

(
e + π /2

)

rearth + a
(18)  

η= sin− 1
(

rearth

rearth + a
cos(e)

)

(19)  
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η and e can be used to derive γ: 

γ = π /2 − e − η (20)  

γ can then be used to derive rfoot and z: 

rfoot = rearth⋅sin(γ) (21)  

z= rearth⋅cos(γ) (22) 

Calculating orbital arrangement, [Ns Np ], from 
[
z rfoot

]
: 

There are two widely used constellation designs: Streets-of-Coverage, and Walker [34]. Both are defined with the notation i : t/ p/ f , where i is 
inclination, t is the total number of satellites, p is the number of equally spaced planes, and f is the relative spacing between satellites in adjacent 
planes. Satellites have a circular orbit, and are evenly spaced in a plane. Planes are evenly spaced across a span around the equator. In a 
Streets-of-Coverage constellation, this span is approximately 180◦. In a Walker constellation, this span is 360◦. Streets-of-Coverage constellations are 
typically only configured with near-polar inclinations, while Walker constellations are capable of having both polar and non-polar inclinations. 

An orbital arrangement is defined in the geometry model by the number of orbital planes, Np, and the number of satellites per plane, Ns. To 
calculate Np and Ns, constellations are assumed to have a Streets-of-Coverage design.

Fig. 8. Relationship between z, rfoot , rearth, e, a, η, and γ  

Constellations generated with the geometry model have the form 97.6◦ : SP/P/2. Relative spacing is fixed to simplify modelling and analysis. It is 
fixed to 2 because f = 2 is commonly used for Streets-of-Coverage constellations, and it enables the following derivation. 

Np and Ns are calculated by assuming the unit arrangement of adjacent satellites is an equilateral triangle (f = 2) (Fig. 9). This is the most efficient 
packing of circular satellite footprints to achieve global coverage. In this arrangement, if the distance between adjacent footprint centres, df , is 2 units, 
then the distance between adjacent planes, dp, is 

̅̅̅
3

√
units (Fig. 9A). That is to say, the ratio of df : dp is 2 :

̅̅̅
3

√
. 

One might think to pack the footprints edge to edge (Fig. 9A), however, this would lead to spots of no coverage, which would result in temporary 
but frequent connection drops. Therefore, the distance between footprint centres needs to be decreased until the spots with no coverage are elimi
nated. To regulate the relative distance between footprint centres, a variable is proposed: relative packing distance, ρ. The distance between adjacent 
footprint centres, df , and the distance between adjacent planes, dp, is calculated as follows: 

df = 2⋅rfoot⋅ρ (23)  

dp =
̅̅̅
3

√
⋅rfoot⋅ρ (24) 

When ρ = 1, footprints meet edge to edge (Fig. 9A). When ρ < 1, footprints overlap. ρ =
̅̅̅
3

√
/2 ≈ 0.866 is the largest value of ρ that ensures there is 

global coverage (Fig. 9B). Any value of ρ smaller than this would result in more overlapping than necessary to achieve global coverage. 
Ns is derived from angular distance between adjacent footprint centres, γf (Fig. 10), which is calculated as follows: 

γf = 2sin− 1

⎛

⎜
⎝

1
2df

rearth

⎞

⎟
⎠ (25)  

2π/γf will return the minimum number of satellites per plane to achieve global coverage. However, this number is non-integer, and an integer number 
of satellites is required. Therefore, this number is rounded up to ensure global coverage: 

Ns =
2π
γf

(26) 

Finding the number of planes, Np, follows the same process as finding satp, except it is based of dp rather than df : 
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γp = 2sin− 1

⎛

⎜
⎝

1
2dp

rearth

⎞

⎟
⎠ (27)  

Np =
2π
γp

(28)  

D. Link Budget Equation for Capacity Model 

Table 6 shows the link budget used in the framework. The data in the table is sourced from Portillo, Cameron, and Crawley [24].  

Table 6 
Beam Link Budget for Starlink Downlink.  

Parameter Value Units 

Tx Diameter 3.5 m 
Tx Frequency 13.5 GHz 
Tx Efficiency 60 % 
Tx Gain 18.6 dBi 
Tx Backoff and Line Loss 5 dB 
EIRP 36.7 dBW 
Path Distance 1684 Km 
Space Loss 179.6 dB 
Atmospheric Loss 0.53 dB 
Rx Diameter 0.7 m 
Rx Efficiency 55 % 
Rx Gain 46.4 dBi 
Rx Line Loss 2 dB 
System Noise Temperature 27.3 dB-K 
Rx Antenna Gain-to-noise Temperature 19.3 dB-K 
Required Nb/N0 12.3 dB 
Data Rate 9416 Mbps  

E. Orbital Shell Tradespace Visualised 

An impression of the number of orbital shells in the orbital shell tradespace from Table 1 can be observed in Fig. 11. The Pareto front belongs 
almost entirely to the same satellite design. This design is used by the optimal traditional and SLSD strategies (Table 5).

Fig. 9. Satellite footprint packing patterns and corresponding distances for footprints with radius, rfoot = 1, subject to relative packing distance, ρ. A: ρ = 1. B: ρ =
̅̅̅
3

√
/2 ≈ 0.866.  
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Fig. 10. Relationship between γf (angular distance between adjacent footprint centres), df (cartesian distance between adjacent footprint centres), and rearth (radius 
of Earth). 

Fig. 11. Orbital Shell Tradespace from Table 2, represented in terms of capacity and deployment cost. Each dot is an orbital shell, and each line connects orbital 
shells which share satellite design. 
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